Name:	(please print)
Signature:	

ECE 2201 – Quiz #1 June 11, 2021 Online

- 1. This quiz is open book, open notes. You may not work with another person or try to obtain the answer to the quiz online.
- 2. Show all work on these pages. Show all work necessary to complete the problem. A solution without the appropriate work shown will receive no credit. A solution which is not given in a reasonable order will lose credit.
- 3. Show all units in solutions, intermediate results, and figures. Units in the quiz will be included between square brackets.
- 4. If the grader has difficulty following your work because it is messy or disorganized, you will lose credit.
- 5. Do not use red ink. Do not use red pencil.
- 6. You will have 30 minutes to work on this quiz.

/25

Room for extra work

The voltage $v_D(t)$ for device D is plotted in the graph below. The current $i_D(t)$ is given by

$$i_D(t) = 15 \text{ [mA] e}^{-0.02 \text{ [1/ms]}t}.$$

- a) Find the power delivered to device D at t = 2 [ms].
- b) Find the energy delivered to device D in the time interval -10 [ms] to 12 [ms].
- c) Assuming the charge carrier are electrons, state in which direction they are moving through device D at t = 0 [ms]. Express this any way you like, as long as you are clear.
- d) State whether the electrons are gaining or losing energy at t = 0 [ms].

Room for extra work

The voltage $v_D(t)$ for device D is plotted in the graph below. The current $i_D(t)$ is given by

$$i_D(t) = 15 \text{ [mA] e}^{-0.02 \text{ [1/ms]}t}.$$

- a) Find the power delivered to device D at t = 2 [ms].
 - b) Find the energy delivered to device D in the time interval -10 [ms] to 12 [ms].
 - c) Assuming the charge carrier are electrons, state in which direction they are moving through device D at t = 0 [ms]. Express this any way you like, as long as you are clear.
 - 3 d) State whether the electrons are gaining or losing energy at t = 0 [ms].

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

"delivered to" = "absorbed by"

a)
$$P_{del} \neq 0$$
 (+) = $P_{absbyD}(t) = -V_{D}(t)l_{D}^{2}l_{D}$
 $sqn + a$

$$calc + d$$
 $P_{absbyD}(t) = 2 l_{msl}$

$$= -V_{D}(2(msl)l_{D}^{2}(2 l_{msl})) = -2 \cdot 0.015^{2} e$$

$$= -28.82 l_{mw}$$

b)
$$W_{abs} by b = -\int (2)(0.015e^{-0.02t}) dt - \int (-3)(0.015e^{-0.02t}) dt$$

$$-5(ms) \qquad 52ms$$

$$v_{ncts} + 2 \qquad = -\left(-\frac{1}{0.02}\right)(2)(6.015e^{-0.02t}) \int_{-5}^{5} -\left(-\frac{1}{0.02}\right)(-3)(0.015e^{-0.02t}) \int_{-5}^{5}$$

$$= -0.3005 + 0.26597 = -3.45 \times 10^{-2} [mJ]$$

Units: we used [V], [A], and [msec] in the integration, so the units in the resulting calculation will be [m]. we can also do this in [V], [A] [S]:

 $0.02 \left[\frac{1}{m_{\rm s}} \right] = 20 \left[\frac{1}{5} \right]$ $5 \times 10^{-3} [5]$ $Wabs by D = - \int (2)(0.015 e^{-20t}) dt - \int (-3)(0.015 e^{-20t}) dt$ $-5 \times 10^{-3} [5]$

The result will of course be numerially equivalent, but the units of the integration above one [J].

of you used [V], [mA], [ms] then units will be [UJ].

- c) At t=0, 10>0, so electrons are moving opposite the reference current suice reference current suice reference current direction. Se current direction = actual current direction. Se electrons are moving into D at the upper terminal,
- d) At t=0, PabsbyD (0 =) D is delivering power, that means any charge carrier, positive or negative, is gaining energy.