
Chapter 3: Simple Resistive Circuits 
 

 Objectives 

o Understand resistor combinations 

 Meaning of series and parallel 

 VDR and CDR and their proper application 

 Device Modeling 

o Foreshadowing of Thevenin and Norton 

 

 Presentation 

o Series and parallel circuit elements 

o VDR, CDR 

 Paying attention to the derivation so that we know where these 

apply 

o Wheatstone Bridge and Delta-Wye connections 

o Device Modeling 

 

 

 

Activity: worksheet on R combinations 

Activity: sample problems  



Chapter 3: Simple Resistive Circuits 
 

This chapter presents techniques that are useful in solving and thinking about circuits. You 

should think of these things as “tools” in a toolbox; keep them handy and take them out when 

you need them. Be very careful, however, that you apply them correctly. It is a very common 

problem that students apply rules where they are not valid. To avoid that problem, make sure you 

understand the derivation of each of these rules; if you don’t, you run the risk of misusing them. 

 

 

3.1 Resistors in Series 
 

Circuit elements are in series if the same current flows through them. 
 

 

Two circuit elements are in series if 

there is nothing else connected 

between them - in other words, if 

there is no junction connecting 

additional circuit elements. 

 

Simplification: 

 

The resistors in the circuit to the right 

are in series, so the current in them is 

the same. In that case, by KVL: 

 

 4321 RRRRiv ss  . 

 

This equation says that, given vs, the current will stay the same if we replace the four resistors 

with an “equivalent” resistor 4321 RRRRReq  .  In other words 

 

  4321 RRRRRRiv eqeqss   
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What “equivalence” means: If the resistors were placed in a box, anything connected to the box 

at terminals a, b would not know the difference between the four original resistors and the 

equivalent resistor.  
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More generally, for ‘k’ resistors in series, we can define an equivalent given by  

 


k

keq RRRRR
1321  . 

 

 

3.2 Resistors in Parallel 
 

Circuit elements are in parallel if the same voltage is across them. 

 

Circuit elements are in 

parallel if the voltage across 

them is the same – that is, if 

they are connected together at 

both ends. 

 

Simplification: 

 

The four resistors in the figure 

to the right are in parallel with 

each other, and with the voltage source. 

 

Since the same voltage across each resistor is the same, we have 
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But these currents add to the source current, so  4321 iiiiis  .  Then 
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This last equation says that, given vs, the current will stay the same if we replace the four 

resistors with an equivalent Req; that is, 
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This equivalence is illustrated in the figure below. 
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More generally, for ‘k’ resistors in parallel, we have 
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Two Resistors in Parallel 

 

For the special case of two resistors in parallel, we have 
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It is important to note that this algorithm does not hold for any more than 2 resistors. You 

cannot use if for 3, 4, 5, …or more resistors. 

 

We also note the equivalent resistance Req for resistors in parallel is always smaller than any of 

the resistances in the original set.  This fact can be used as a quick “check” that your equivalent 

is correct. 
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3.3  The Voltage-Divider and Current-Divider Circuits 
 

Voltage Divider Rule (VDR) 

 

The voltage divider is a configuration that occurs often. Sometimes it arises as a result of 

simplification of a more complicated circuit. 

 

An analysis of the circuit on the right gives the 

following results for the “output” voltage vo.  
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So the source voltage has been “divided” by the two resistors; we have calculated the fraction of 

the source voltage that appears across R2.  We could have done a similar thing for R1.  This is the 

voltage divider rule (VDR). 
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What if we connect a “load” resistance RL to resistor R2? 

 

 

If we add a resistor RL, the voltage vO 

will change because the current through 

R2 is now different; some of it is being 

“drawn off” by RL. (The current i will 

change, too.)  Let’s do the calculation… 

 

 

The figure to the left shows a load 

resistor connected across R2.  The 

equivalent resistance for R2 and RL in 

parallel is: 
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The voltage vO is now 
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which we get by applying VDR. 

 

 

 

 

 

 

 

Note carefully that we cannot apply the voltage divider rule in the circuit above using R1 and R2; 

this circuit is not the same as the one we used to derive VDR. However, if we combine R2 and 

RL into a parallel equivalent, the combination of R1 and Req is the same as the VDR circuit. 

 

The voltage vO can also be written (after some algebra) 
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This makes it clear that the VDR formula in its original form does not apply here. 

 

Note: 

 

If RL is very large (infinite), the second equation for vS reduces to the simple voltage divider 

equation, as it should (the term 







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LR

R21  approaches 1). 

 

 

Current Divider Rule (CDR) 

 

Just as voltage can be “divided” by two resistors in series, current can be “divided” by two 

resistors in parallel. The circuit below shows how the current in each of the resistors can be 

found. 

 

 

The voltage v is RiRiv 21  . 

 

If we combine the resistors in parallel we 

get  
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Equating the expressions for v from the first equations gives 
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Be careful not to use VDR and CDR where they don’t apply!! Students lose a lot of credit on 

quizzes and exams because they use VDR and CDR where they don’t apply. They do this 

because they are not keeping in mind the derivation of these rules. We will see examples of this 

in class… 
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3.4  Measuring Resistance – The Wheatstone Bridge 

 

The Wheatstone Bridge (or just “bridge”) configuration is useful in making a variety of electrical 

measurements. For example, we can use it in the circuit shown below to measure the unknown 

resistance Rx. 

 

To measure Rx, we insert a sensitive d’Arsonval meter movement (which we will call a 

galvanometer) into the center branch, as shown. The arrow through R3 means that it is 

adjustable. Then, we adjust R3 until the current ig is zero. In that case, we have 𝑅𝑥 = 𝑅3
𝑅2

𝑅1
 . 

Let’s prove that result… 

 

𝑖𝑔 = 0 ⟹  𝑖1 = 𝑖3   and  

𝑖2 = 𝑖𝑥. 

 

Also, by KVL through R1, R2, 

and the d’Arsonval, 

𝑖3𝑅3 = 𝑖𝑥𝑅𝑥  and  𝑖1𝑅1 = 𝑖2𝑅2 

. Solving for Rx… 

 

𝑅𝑥 =
𝑖3

𝑖𝑥
𝑅3 . We also have 

 
𝑖3

𝑖𝑥
=

𝑖1

𝑖2
=

𝑅2

𝑅1
 . So finally we 

get 
 

𝑅𝑥 = 𝑅3
𝑅2

𝑅1
  .  QED 

 

 

 

 
Typically we make R1 and R2 adjustable in decades, i.e., R1 and R2 can be set to 1 , 10 , 

100 , and 1000 . That means  R2/R1 = 0.001, 0.01, …100, 1000. R3 is set to vary from, 

say, 1  to 1000  in increments of 1 . That will give us a wide range of possible 

unknown resistances. For practical reasons we should expect to be able to measure 
 

1 [ < Rx < 1 [M . 
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3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 
 

The Wheatstone bridge is an example of a circuit for which resistances cannot be reduced using 

parallel and series combinations. Suppose we model the galvanometer with a resistance… 

 

 

 

What is the equivalent 

resistance at the terminals a) 

and b) ?? We cannot use 

series/parallel combinations 

here because there are no 

resistors in series or parallel!! 

 

 

 

  𝑅𝑒𝑞,12 =? ? 

 

 

 

 

 

 

 

 

 

 

 

We will not prove it here, but in this case we can use the following transformation… 
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These configurations are interchangeable, but be careful to note the positions of the terminals (a, 

b, c) relative to the resistors. The formulae for the transformations are… 

 

 

𝑅𝑎 =
𝑅1𝑅2 + 𝑅2𝑅3 + 𝑅3𝑅1

𝑅1
                                           𝑅1 =

𝑅𝑏𝑅𝑐

𝑅𝑎 + 𝑅𝑏 + 𝑅𝑐
 

 

𝑅𝑏 =
𝑅1𝑅2 + 𝑅2𝑅3 + 𝑅3𝑅1

𝑅2
                                            𝑅2 =

𝑅𝑎𝑅𝑐

𝑅𝑎 + 𝑅𝑏 + 𝑅𝑐
 

 

𝑅𝑐 =
𝑅1𝑅2 + 𝑅2𝑅3 + 𝑅3𝑅1

𝑅3
                                            𝑅3 =

𝑅𝑎𝑅𝑏

𝑅𝑎 + 𝑅𝑏 + 𝑅𝑐
 

 

 

Now we can transform the bridge resistors like this: 
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Watch where you put the terminals a, b, c!! 
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