
Chapter 4: Techniques of Circuit Analysis 
 

This chapter gives us many useful tools for solving and simplifying circuits. We saw a few 

simple tools in the last chapter (reduction of circuits via series and parallel combinations of 

resistances, for example) but in this chapter we take circuit simplification much farther… 

 

 

4.1 Terminology 
 

Planar Circuits can be drawn on a plane with no crossing branches. 

 

Non-Planar Circuits cannot be drawn on  a plane without branches crossing one another 

somewhere.  

 

 

 

 

 

 

 

 

Figure 4.1 (left) shows a circuit that has 

crossing branches but that can be re-drawn 

without any branches crossing. This is a 

planar circuit.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (right) shows a circuit that is not 

planar: there is no way to draw it without 

branches crossing. 

 

In Circuit Analysis we will consider planar 

circuits only. Many of the techniques we learn 

here cannot be applied to non-planar circuits. 

 

 



Definitions 

 

A node is a point in a circuit where two or more circuit elements meet. The number of nodes in a 

circuit is n. 

 

A path is formed when adjoining (connected) circuit elements are traced, in order, without 

passing through any node more than once. A closed path is a path whose starting and ending 

points are the same. 

 

A branch is a path connecting two nodes. 

 

A mesh is a closed path that does not contain any other closed paths The number of meshes in a 

circuit is m. 

 

Looking at the circuit in Figure 4.1b (shown again below), we can identify: 4 meshes; 8 closed 

paths; 6 nodes. Two of the four meshes are shown in green; two nodes are shown as red dots; one 

possible closed path which is not a mesh is shown in blue. The blue closed path contains two 

meshes. (The arrows on the paths are just for show: we can trace a path in either direction.) 

 

 

 

Essential Node: A useful kind of node is the essential node, which is a node at which at least 

three circuit elements meet. In the circuit above there are four of these; one of them is labeled as 

a green dot. One of the red dots is also an essential node; the other is not. 

 

An essential branch is a branch that connects two essential nodes. There are quite a few in the 

circuit above. 

 

 

  



Where are we going with all this?? This terminology helps us figure out how many equations 

we will need to solve the circuit: 

 

We need as many equations as there are essential branches with unknown currents; call this 

number be. Then we can write (ne – 1) KCL equations so we need [be – (ne – 1)] KVL equations. 

Here, ne is the number of essential nodes. 

 

We will shortly look at two very important and very powerful circuit analysis techniques: 

 

 Node Voltage Method (NVM): allows us to solve a circuit with (ne – 1) KCL equations. 

 

 Mesh Current Method (MCM): allows us to solve a circuit with [be – (ne – 1)] KVL 

equations.  

 

Using either method, we save quite a few equations, since without them we would need (ne – 1) 

KCL equations and [be – (ne – 1)] KVL equations. 

 

  



4.2 Introduction to the Node Voltage Method 
 

To use the Node Voltage Method (NVM) we define new circuit variables called the node 

voltages. We find the node voltages by solving simultaneous equations called the node voltage 

equations. These are generally much fewer in number than we need with basic KVL, KCL, 

Ohm’s Law techniques. If we have the node voltages, we can find any other current or voltage in 

the circuit with a single equation (i.e., no more simultaneous equations will be necessary). 

 

 

Node Voltage Method Algorithm 
 

Basic steps in using NVM (we will clarify and expand on this shortly): 

 

 Find and label all essential nodes. 

 

o There are ne essential nodes, and we will need to solve ne – 1 node voltage equations. 

 

 Choose one of the essential nodes as a reference and label it with the symbol       . 

 

o This is where the “- 1” arises in “ne – 1 equations”: we do not need a node voltage 

equation at the reference.  

o Typically we will choose the reference node to be the one with the largest number of 

circuit elements connected to it. But we do not have to do this, and we will see there 

may be reasons for choosing a different node as the reference. 

 

 Define the non-reference node voltages.  

 

o The non-reference nodes are the ones you did not choose as the reference node. The 

non-reference node voltages are the voltage drops from each non-reference node to 

the reference node (an example or two will clarify this). These are labeled with the 

positive sign at the node, and the negative sign at the reference node. 

 

 Apply Kirchhoff’s Current Law (KCL) to each non-reference node, writing currents at 

each node in terms of the node voltages and any sources present. 

 

o Although there is more than one way to do this, in this class we will always set the 

sum of the currents leaving the node equal to zero. 

 

 Solve the node voltage equations. The resulting node voltages are considered the solution 

to the circuit. If you have those, you can find any current or voltage in the circuit with 

one equation (no more simultaneous equations needed). 

 

 

 

 

 



To see how to express the current leaving a branch in terms of the node voltages, we look at the 

following example. 

 

 

 
 

 

The essential nodes are labeled 1, 2, and       (reference node). The node voltages are defined as 

described above: positive at the non-reference node and negative at the reference. The current i12 

is leaving node 1 and heading from node 2. It can be written in terms of node voltages as 

 

1 2
12

2[ ]

v v
i





. 

 

Where did we get that equation for i12? From KVL: 

 

1 2 12(2[ ]) 0v v i     

 

Solving this equation for i12 gives the previous equation. We continue in this way to set up KCL 

at each non-reference node. So, at node 1, the sum of the currents leaving node 1 is 

 

1 1 2 1 10
0

5 2 1

v v v v 
    

 

The sum of the currents leaving node 2 is 

 

2 1 2 2 0
2 10

v v v
    

 

If the third term of the first equation is confusing, do a KVL around the loop containing the 10 

[V] source, the 1 [] resistor, and the 5 [] resistor. Solve this KVL for the current leaving node 

1, and you will get the third term in that equation. Eventually, you will get to the point where 

these terms can be written down quickly without having to examine each KVL individually. 

 

i12 



The third term in the second equation is easy, since we know the current in that branch: it’s 2 [A] 

entering node 2, so the current leaving is  – 2 [A]. In this case, we don’t try to express it in terms 

of the node voltages. Note also that we have summed the currents leaving each node. This is an 

arbitrary choice, but we must choose something, and be consistent. 

 

We have two equations for two unknowns. The solution is… 

 

𝑣1 = 9.091 [𝑉]   𝑣2 = 10.91 [𝑉] 
 

Now that we have the node voltages, we can find any other voltage or current in the circuit. To 

do that we probably need to solve one equation, but we will not have to solve simultaneous 

equations anymore. For example, the current in each branch is easy – we have already shown 

how to calculate i12 in the equation above. Also, the voltage across any individual component can 

be found with one KVL. As one more example, the voltage across the current source in the 

circuit above is nothing but v2. 

 

 

Notation Rules (you knew we were going to have this…) 

 

All node voltages must be labeled just as they are in the diagram above. Those node voltages 

have a ‘+’ sign at the non-reference node, and a ‘-‘ sign near the reference node. It is not 

sufficient to simply label v1, for example, near node 1. It is certainly not acceptable to leave out 

the node voltages from your diagram. If you do, significant credit will be subtracted from 

quizzes and exams. 

 

  



4.3  The Node Voltage Method and Dependent Sources 
 

If we have dependent sources, we will need one equation for each controlling variable. We call 

these auxiliary equations. We will need to write these equations in terms of the node voltages. 

This is because we are trying to find the node voltages (which are the circuit variables), and we 

don’t want to introduce any extra variables. 

  

 

4.4  The Node Voltage Method: Some Special Cases 
 

Special cases arise when we have a voltage source connected either (1) between an essential 

node and the reference node, or (2) between two non-reference essential nodes. 

 

(1) Voltage source between an essential node and the reference node. 

 

In the circuit below the 100 [V] source is connected from essential node 1 to the reference node. 

+

-

100Vsv

25

10

50 5 A
1v 2v

+ +

--

1 2

 
 

This is a simple case. Remember that we are trying to find the node voltages, which are the 

voltage values between each of the essential nodes and the reference node. But we already know 

that in this case !! 

 

1 100V sv v
 

 

This is the node voltage equation for node 1. We have still have the same number of node 

voltage equations, but one of them is trivial. This works for dependent sources, too, although we 

of course still need the auxiliary equation. 

 

The rest of the circuit is solved as follows: 

 
𝑣2 − 𝑣1

10
+

𝑣2

50
− 5 = 0 

 

This gives v1 = 100 [V]; v2 = 125 [V]. 

 

 



(2) Voltage source between two non-reference essential nodes. 

 

In the circuit below the dependent source is connected between two non-reference essential 

nodes. We are using a dependent source for illustration, but our remarks are valid for 

independent sources. 
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Node voltage v1 is already known:  

 
𝑣1 = 50 [𝑉] . 

 

Let’s write a node voltage equation at node 2:  

 

2 1 2 0
5 50


  

v v v
i

 

 

How do we write the current in the dependent source? There is no way to write a ‘v/R’ term 

there. But there is a current there that we have to account, for so we will call it ‘i’.  

 

Now at node 3:  

3 4 0
100

  
v

i
 

 
What should we do about this unknown current ‘i’? Let’s add the last two equations together: 

 

2 1 2 3 4 0
5 50 100


   

v v v v

 

 
Hmmm…this last equation is what we have got if we had treated node 2 and node 3, with the 

dependent source in between, as one big node…it’s as if it were a … a… 

 

 

 



Supernode!!  

- +

2 3
Q10i

 
 

 

In the figure above, the red dashed line encircles the supernode, and the arrows show currents 

leaving it. Let’s apply our usual node voltage technique to those currents. 

 
 

At node 2: 

2 3 1 3 4 0
50 5 100


   

v v v v

 

 

As we found above, node voltage v1 is already determined:  

 
𝑣1 = 50 [𝑉] 

 

These are our node voltage equations. But we have four unknowns (v1, v2, v3, and iQ) and only 

two equations. We need two more equations. For one, note that we have not included any 

information about the dependent source. We include this by simply doing a KVL around a loop 

that includes the dependent source: 

 

2 3 10 0  Qv v i
  

This equation comes from the fact that the voltage between node 2 and node 3 is “constrained” 

by the voltage source. This is the constraint equation. 

 

Finally, since we have a dependent source, we need an auxiliary equation. Remember it has to be 

written in terms of the node voltages. 

 

2 1

5


Q

v v
i

 
 

Now we have four equations in four unknowns and we can solve for the node voltages. 

 

 

 



Important Note  The supernode equation (the first of our four equations above) contains v2 

AND v3, so we do not have any fewer node voltages to solve for. But the kind of equations is 

different from the case where we do not have a supernode: Instead of two node voltage 

equations, we have a supernode equation and a constraint equation. 

 

 

Counting Equations 
 

It is good practice to count essential nodes and determine how many equations, and of what type, 

you are going to need. We will do this in the examples in class. You will need… 

 

 …one node voltage equation for each non-reference essential node.  

 …one constraint equation for each supernode 

 …one auxiliary equation for each dependent source. 

 

 

Choosing the Reference Node 

 

You can choose any essential node as the reference node. Typically this will be the one with the 

largest number of branches connected to it, since then you will avoid having to write an equation 

with a lot of terms. 

 

One reason you might not want to choose the node with the largest number of branches is that 

you might be able to simplify the problem by choosing the reference node so that one or more of 

them is trivial. If you choose the reference so that a voltage source (dependent or independent) is 

connected to it, with the other end of the voltage source at another essential node, then that node 

voltage is trivial.  

 

 

 

  



4.5 Introduction to the Mesh Current Method 
 

To use the Mesh Current Method (MCM) we define new circuit variables called the mesh 

currents. We find the mesh currents by solving simultaneous equations called the mesh current 

equations. These are generally much fewer in number than we need with basic KVL, KCL 

techniques. If we have the mesh currents, we can find any other current or voltage in the circuit 

with a single equation (i.e., no more simultaneous equations will be necessary).  

 

Consider the circuit below, where KCL is applied to the node at the top.  
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KCL:  

1 2 3 i i i  

 

KVL around the left and right loops gives… 

 

𝑣𝑆1 = 𝑖1𝑅1 + 𝑖3𝑅3 
 

𝑣𝑆2 = −𝑖2𝑅2 + 𝑖3𝑅3 
 

If we solve the KCL equation for  i3  and substitute the result into the KVL equations we get: 

 

𝑣𝑆1 = 𝑖1(𝑅1 + 𝑅3) − 𝑖2𝑅3 
 

𝑣𝑆2 = −𝑖2(𝑅1 + 𝑅3) + 𝑖1𝑅3 
 

 

We now have two equations, in the form of KVLs, in two unknowns. This substitution, and the 

resulting equations, can be done “automatically” using the mesh current method … 

 

To use the mesh current method to get the last two equations directly, we do the following. 

  



Mesh Current Method Algorithm 

 

 

1. Find the meshes and label each with a current. Remember that we learned how to count 

meshes m, essential nodes ne, and essential branches be. Then the number of meshes will be 

 

𝑚 = 𝑏𝑒 − (𝑛𝑒 − 1) . 

 

o The two mesh currents in the circuit below are labeled ia, ib. The direction shown 

(clockwise for both) is arbitrary – we could have chosen either one (or both) to go in 

the other direction. We will refer to the two meshes as “mesh a” and “mesh b”. 

 

o Note that the mesh currents are defined as the currents going “around” the perimeter 

of the loops. It is important to realize that these are not necessarily the same as branch 

currents i1, i2, i3. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Apply KVL around each mesh, writing voltages across resistors in terms of the mesh 

currents. The result for the circuit above is: 

 

Mesh a           1 1 3 0S a a bv i R i i R    
 

 

Mesh b            3 2 2 0b a bi i R i R v   
 

     

   
3. Solve for the mesh currents. Then, find the branch currents in terms of the mesh 

currents. 
 

Going back to the original circuit where we defined the branch currents i1, i2, i3, is should be 

clear that  i1 = ia and  i2 = ib. 

 

What about  i3? Looking at the circuit below you should be able to convince yourself that           

i3 = ia – ib. So we have found the branch currents in terms of the mesh currents. This is the reason 

for the statement above that the mesh currents are not necessarily equal to the branch currents. 
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If we substitute our results for the branch currents in terms of the mesh currents into the mesh 

current equations, we can show that the mesh current equations are equivalent to the two 

equations we got earlier: Specifically, the equations 

 

 

 

1 1 3 3

2 3 2 3

0S a b

S a b

v i R R i R

v i R i R R

   

      

 

are the same as the previous KVL equations if we make the assignments i1 = ia , i2 = ib , and      

i3 = ia – ib.  

 

 

 

  



4.6 The Mesh Currents and Dependent Sources 
 

For each dependent source, we need an additional equation defining the controlling variable. 

This is always the case, but now we want to write the defining equations in terms of the mesh 

currents. If we use, say, branch currents to define the controlling variables, we will have 

introduced additional unknowns. 

 

 

 

4.7 The Mesh Currents Method: Some Special Cases 
 

Two special cases arise when current sources are present. (Note that these cases are analogous to 

the case of voltage sources in the node voltage method.)  

 

 

(1) A branch contains a current (dependent or independent) 
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-
ibia vs1

is1 =

3 [A]

R1 R2

R3

 
 

 

In the circuit shown above, it should be clear that 3[A]ai  , which means that we have one less 

mesh current equation to solve because one of the unknowns (ia) is now known. So there is only 

one mesh current equation for this circuit, which is 

 

 1 3 2 0s b a bv i i R i R     

 

So a current source in a branch means that the number of mesh current equations is reduced by 1. 

 
  



(2) A current source (dependent or independent) is being shared by two meshes 
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The mesh current equations for the circuit above are as follows. 

 

Mesh b) 

   1 3 2 0b b c b ai R i i R i i R    
 

 

KVL around either mesh a or c includes the current source. We cannot assume that the voltage 

across the current source is 0, but we don’t know what it is, so we will simply label it “v”. Then 

we have 
 

 1 2 4 0S a b av i i R v i R     
 

 

  3 2 5 0c b S ci i R v i R v    
 

 

Adding these last two equations gives 

 

   1 2 3 2 5 4 0S a b c b S c av i i R i i R v i R i R        
 

 

But this equation is just what we would have obtained if we had done a KVL around the path 

shown in red below. Why, it’s almost as if we had…a…a…



Supermesh !! 
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Above we have drawn a dashed line around the supermesh. We can write the equation above in 

one step using this mesh:  

 

   1 2 3 2 5 4 0S a b c b S c av i i R i i R v i R i R        
 

 

But we have to get the value of the current source involved, which we do by recognizing that 

there is a constraint imposed on ia and ic:  

 

5  a ci i
 

 

So we have still have three equations: one regular mesh current equation, and one super mesh 

equation, and one constraint equation (the constraint equation is the one we just wrote). 

 

 

  



Let’s do an example…we will find the power absorbed by the 10 [ resistor and the power 

delivered by the 3 [A] source in the circuit below. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 3 meshes, two of which share a current source. So we will have three mesh current 

equations: 

 

 one regular mesh current equation 

 one supermesh equation 

 one constraint equation 

 

The regular mesh current equation is  

 

   5 10 10 0    c b c ai i i i  

The super mesh equation is  

 

   7 25 5 10 6 0       b b c a c ai i i i i i
 

 

The constraint equation is 

3 a bi i
 

 

Solving these equations together gives ia = 2.323 [A]; ib = -0.667 [A]; ic = 0.656 [A]. 

 

Now that we have found the currents, we can find anything else we might need using only one 

equation. Since we want power for the resistor and the current source, we have labeled the 

current in the resistor and the voltage across the current source in the next figure. 
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The current ix is 

 

𝑖𝑥 = 𝑖𝑎 − 𝑖𝑐 = 1.667 [𝐴] 
 

Then  

𝑝𝑎𝑏𝑠,10[Ω] = 𝑖𝑥
2(10) = 27.8 [W]

  

How did we know that ix was ia – ic and not ic – ia? Because at the 10 [] resistor, ix is defined to 

be going in the direction of ia and opposite the direction of ic. 

 

To find vs we need a KVL: 

 

   7 30 10 6 0a b S a c ai i v i i i       

 
This gives vS = -113.6 [V]. Then 

 ,3[ ] 3 113.6 340.8[ ]del Ap W   
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4.8 The Node Voltage vs. the Mesh Current Method 

 
We want to think carefully in each case about whether the node voltage or the mesh current 

method is easier to implement. Some factors to consider: 

 

 One of the methods may require fewer equations to solve simultaneously. For any circuit 

we will have ne – 1 node voltage equations and m = be – (ne – 1) mesh current equations. 

 Voltage sources may reduce the number of node voltage equations by introducing trivial 

equations. Current sources may reduce the number of mesh current equations by 

introducing trivial equations. This of course depends on where we put the reference. 

 The variable we are looking for may already be a mesh current or a node voltage, in 

which case solving by the appropriate method will yield the answer directly. 

 

An observation: Most beginning students prefer mesh currents, but in fact the node voltage 

method almost always involves fewer equations. Also, node voltage method is extremely useful 

in many electronics applications. I would strongly suggest getting familiar with the node voltage 

method. 
  



4.9 Source Transformations 
 

We can sometimes simplify a circuit using equivalent circuits… 

 

Two circuits are equivalent if one can be replaced with the other without changing circuit 

variables (voltages and currents) in the rest of the circuit. We have already seen how to use 

equivalent circuits to simplify using series and parallel resistor combinations. In that case, we are 

replacing a group of resistors by a single equivalent resistor. Source transformation is another 

such simplification technique. 

 

The circuits “1” and “2” below are equivalent with respect to terminals a and b, provided that 

vs, Rs, is, and Rp are related to one another in a particular way. If they are, then a resistor RL 

connected to terminals a and b will have the same voltage across it (and the same current through 

it) whether it is connected to circuit 1 or to circuit 2. In fact, anything connected to terminals a 

and b of either circuit will have the same voltage across it and current through it. That is what 

“equivalent” means. 

 

 

Note that it is very important to include the qualifier with respect to terminals a and b, because 

two circuits are not necessarily equivalent at just any two terminals. 

 

Bottom Line: If the parameters are related correctly, a voltage source in series with a resistor 

can be replaced with a current source in parallel with a resistor. 
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But what relationship must exist among vs, Rs, is, and Rp in order for these circuits to be 

equivalent? We find this relationship by requiring that equivalence must hold for any load 

resistor RL, and in particular it must hold for RL = 0 and RL = . 

 

For RL = 0, we ask what current iL flows through RL. (By the way, RL = 0 means that a short 

circuit exists at terminals a and b, and the resulting current is the short-circuit current). If it is 

connected to circuit 1, then  

 S
L

S

v
i

R
   

If it is connected to circuit 2, then 

 

L Si i  

 

For these to be equivalent, we must have  

S
S

S

v
i

R
 . 

 

Now consider RL =  . In that case, terminals a and b are open circuit, and the voltage vL is the 

open-circuit voltage. Then when RL is connected to circuit 1 we have 

 

 
L Sv v   

and when it is connected to circuit 2,  

 

L S Pv i R . 

So that means  

 

S S Pv i R  

 

Comparing this equation to the one for iS above shows that we also need RS = RP. 

 

Summary: A voltage source vS in series with a resistor RS will be equivalent to a current source 

iS in parallel with a resistor RP if 

 

S S Pv i R  and 
S PR R . 

 

This is the source transformation theorem. 

  



4.10 Thevenin and Norton Equivalents 
 

We are often interested in the voltage and/or current in a load that is connected to a particular 

pair of terminals in a circuit. For example, we may want to connect a load resistor, or maybe 

several different load resistors, to the terminals labeled a), b) in the circuit shown below. 
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The following idea is very powerful, and may help in analyzing a case like this: 

 

 

Thevenin Equivalent Circuit: The behavior of any linear circuit at a 

specific pair of terminals in a circuit may be modeled by a voltage 

source vTH in series with a resistor RTH. 

 

 

We will look only at linear circuits in this course; linear circuit is defined later in the section on 

superposition. What we are saying is that the circuit below on the right can be modeled by the 

circuit on the left. 
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Important Notes: 

 

 We are “modeling” the circuit at two particular terminals with vTH and RTH – we are not 

suggesting that the only things inside the box are a resistor and a voltage source. 

 The model holds for any load but only at terminals a), b). If we different terminals in the 

original circuit, the values of vTH and RTH will change. 

 The circuit must be linear, but it can contain any of the basic circuit elements: voltage 

sources, current sources (dependent and independent), resistors, capacitors, and inductors. 

 

Finding vTH and RTH: 

 

The box in the figure below contains an arbitrary linear circuit. We have labeled terminals a) and 

b). On the right, we have an open circuit at a), b), resulting in an open-circuit voltage vOC. (We 

can think of this as an infinite load resistance.) On the left, we have connected a short to the 

terminals, resulting in a short-circuit current isc. 
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By comparing the drawing on the left with the Thevenin Equivalent drawing above, it should be 

clear that  

 

 
OC THv v  . 

 

By comparing the drawing on the left with the Thevenin Equivalent, we can see also that 

 

 TH
SC

TH

v
i

R
  . 

 

So we already have an algorithm for finding a Thevenin Equivalent: If we know the open-circuit 

voltage and the short-circuit current at the terminals a), b), we can find the Thevenin Equivalent: 

 

TH OCv v    and   TH
TH

SC

v
R

i
  .  



If this were an experiment, we could measure vOC and iSC. If it is an analytical problem, we can 

calculate them using our knowledge of circuit theory. 

 

What about that circuit earlier? We can use the node voltage method, or the mesh current 

method, or KVL, KCL, Ohm’s Law, to find the open circuit voltage and short circuit current at 

terminals a, b. Below we show these variables – NOTE CAREFULLY that if the polarity of voc 

is positive at a, then isc has to be indicated as going from a to b, as we have it below. If we mix 

those up, we will get the wrong sign for RTh.  

 

 

Solving these circuits gives voc = 15.67 [V], isc = 3.418 [A]. That means  

 

𝑅𝑇𝐻 =
𝑣𝑂𝐶

𝑖𝑆𝐶
=

15.67 [𝑉]

3.418 [𝐴]
= 4.585 [Ω] . 

 

Is this useful?? Wow, yeah! This idea is used a lot. What it means is that we can talk about a lot 

of complicated circuits without having to know anything about those circuits except their 

Thevenin Equivalents. In fact, we often don’t even need to know what the Thevenin voltage and 

resistance are. For example, we can analyze an audio amplifier without knowing what will be 

connected at the input, if we just know that whatever will be connected has a Thevenin 

equivalent This is extremely useful. 

 

It also means that if we need to analyze how several different load resistors behave when 

connected to a circuit at two particular terminals, we only need the Thevenin Equivalent, and we 

can make the calculations much simpler. This idea is shown below. 
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Generally it is a lot easier to handle the Thevenin Equivalent circuit on the right than it is to 

analyze the complicated circuit on the left. 

4.11 More on Deriving a Thevenin Equivalent 

 
There is another method for finding RTH: 

 

The Test Source 

 

Suppose we had a circuit that could be modeled using only a resistor. Then if we were to apply a 

voltage source vT and measure or calculate the current iT through it, we could find RTH as: 
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v
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i
  

 

 

 

 

 
Here, vT is known as the “test source”. If our circuit is simply a resistance, we can use the test 

source to find that resistance. This will be the Thevenin Equivalent resistance RTH. 

 

Be careful: the polarity of vT and the current iT that we calculate have to be in the active sign 

convention. Otherwise, we will get the wrong sign for RTH. This can be seen just by noting that if 

in the circuit above, RTH is positive and vT  is positive, iT will be positive. If we were to reverse 

the direction of the current and then take the ratio, we would get the wrong sign for RTH. 

 

But is this useful? If we are finding the Thevenin Equivalent of a circuit that is just resistances, 

like the one above, we can simply combine these into one resistance (series, parallel, delta-to-

wye), and we have RTH. We don’t need a “test source”. But what if our circuit is not just a 

resistance, and contains sources as well? We can use the test source idea as follows. 

 

 

1. De-activate all independent sources. 

 

To de-activate an independent voltage source, we replace it with a short. Note that a short is a 

voltage source of value 0 [V]. 

 

+ -
de-activate


 

+

-

THR

a

b

Ti Tv

Circuit modeled by RTH 

only

Test source



 

 

To de-activate an independent current source, we replace it with an open circuit. Note that an 

open circuit is a current source of value 0 [A]. 

 

de-activate


 
 

2. Apply a test source of known value; it doesn’t matter what the value is. You can even 

leave the value out and just call it vT. 

 

 

3. Calculate the current iT. 

Then T
TH

T

v
R

i
 .  If you have not given your test source a value, just calculate the ratio vT/iT.  

 

Notes 

 

 You cannot de-activate dependent sources. You need to leave them in; they affect the 

equivalent resistance of the circuit. 

 If you have nothing but resistances and independent sources, you don’t need the test 

source: you can simply de-activate the independent sources and find RTH by resistor 

combinations. See the example on the next page. 

 If there are dependent sources but no independent sources, you have to use a test source, 

because the open circuit voltage and short circuit current will both be 0, so you can’t take 

the ratio. See the example two pages forward. 

 

  



Example: Resistances and independent sources. 
 

Find the Thevenin Equivalent resistance of the circuit below at terminals a), b).   

 

 

 

 

 

 

 

 

 

 

 

Since we have only independent sources, we can simply de-activate them: 
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Now simple resistor combinations give us 

 

 4 20 5 8[ ]THR      
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Example: Resistances and dependent sources. 
 

Find the Thevenin Equivalent resistance of the circuit below at terminals a), b).   

 

We will not do this problem here in the notes. Here we just note that at terminals a), b), both the 

open circuit voltage and the short circuit current are 0 because there are no independent sources. 

So this circuit is modeled by a resistance only. But we cannot find RTH from vOC and iSC – we 

must apply a test source.  
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On Finding the Thevenin Equivalent 

 

 If the circuit contains independent sources, you can find an open circuit voltage and a 

short circuit current, or you can use a test source to find RTH. We only need to choose two 

of these things to find the Thevenin Equivalent. It is a smart idea to check to see which of 

these methods is easier to use: the short circuit current may remove components in 

parallel to the terminals of interest, for example. The test source method is useful if we 

want to de-activate independent sources. 

 

 If the circuit consists only of resistances, these can be combined into one to find RTH. In 

that case, the open circuit voltage and short circuit current will be both be 0, which means 

the Thevenin voltage is 0. 

 

 If the circuit contains only resistances and dependent sources (or only dependent 

sources), the open circuit voltage and short circuit current will again be 0. In that case, 

there is no choice but to use a test source. 

 

 

 

On a Negative Thevenin Equivalent 

 

We assume that there are no negative-valued resistors (of the type you find in your lab kit, for 

example). However, when modeling a circuit that contains dependent sources, it is possible that 

the Thevenin Equivalent resistance is negative. This does not mean that we can have negative 

valued resistors. It means that the circuit model includes a negative resistance. That resistance is 

simply part of the model; it is not an actual circuit component. 

 

Only circuits with dependent sources can have negative RTH. But just because a circuit has a 

dependent source does not mean it will have a negative RTH.  



Two interesting cases 

 

Consider the circuit below, where we are interested in terminals a), b). 
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Any circuit components to the left of the source vS2 cannot have any effect on what happens at 

terminals a), b), because vS2 fixes the voltage across those components. So no matter what values 

R1 and R2 or vS1 have, the voltage across them is vS2, and something connected to a), b) will see 

vS2 but not those components. 

 

What that means is that as long as we are interested only in what happens at a), b), which is to 

the right of terminals 1) and 2), we can re-draw the circuit as follows. 
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Now think about the current source. Nothing outside of R4 and the current source can “see” R4, 

because the current through it is fixed by iS. In other words, if R4 doubled in value, nothing 

different would happen at terminals a), b) – or terminals 1), 2) for that matter. So as long as we 

are interested in something outside the branch with iS and R4, we can remove R4 as well. 

 

 



Bottom line 
 

Circuit components in parallel with a voltage source can be replaced by just the voltage source, 

provided we are interested only in what is happening outside of those components.  

 

Circuit components in series with a current source can be replaced by just the current source, 

provided we are interested only in what is happening outside of those components.  

 

  



4.12 Maximum Power Transfer 
 

Sometimes we are interested in maximizing the power transferred to a load: we want to get as 

much power to our stereo speakers as possible, for example. The power transferred to a load 

from a circuit depends on the circuit as well as on the load. 

 

The circuit below shows a Thevenin Equivalent of anything – maybe a stereo system. The 

resistance connected a), b) represents the load – a speaker, for example. We want to analyze how 

much power is delivered to the load. 
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The power delivered to RL is 
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Analysis: If RL is very small (approaching 0), no power is delivered to RL. If RL is very large 

(approaching infinity), again no power is delivered. So there is a maximum at some finite value 

of RL, which we can find by differentiating with respect to RL and equating to 0: 
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So the power delivered to the load is a maximum (i.e., we are getting as much power to the load 

as possible) if the load resistance is equal to the Thevenin resistance. 

 

The amount of power delivered in that case is 

 



2

, max
4l

TH
del R

L

v
p

R


 
 

We may not always be able to choose the load resistance, but if we can, it should be as close as 

possible to the Thevenin resistance. Audio speakers are made to have resistances equal to the 

output resistance (Thevenin resistance at the output) of typical stereo amplifiers. 

 

  



4.13 Superposition 
 

Idea: For some kinds of systems, the response of the system to several sources is equal to the 

sum of the responses to each source individually. 

 

Definitions:  

 System: For our purposes, a system is any circuit we may be interested in. In mechanical 

engineering, it could be a collection of parts connected by springs, for example. 

 Source: For our purposes, a source is any independent voltage or current source. 

 Response: For our purposes, the response of the system will be any voltage or current 

generated by the sources. 

 Superposition: The idea that the system response to several sources is the same as the 

sum of the responses to the individual sources is the Superposition Principle.  

 Linear systems: A system for which superposition holds is a linear system. 

 

 

How can we use this idea to solve circuits? Here is the algorithm: 

 

Application of the Superposition Principle: 

 

1. De-activate all but one of the independent sources. We do not consider dependent sources 

here; those are always left in the circuit. (De-active means to replace voltage sources with 

a short (0 voltage) and current sources with an open circuit (0 current), as we did for 

finding Thevenin Equivalent Resistances.) 

2. Find the response of the system (a voltage or current we are looking for) to the remaining 

source. 

3. Repeat steps 1 and 2 for each source.  

4. Add the responses to each source to get the total response to all sources. 

 

Superposition may make some circuits easier to solve, but it will usually be more trouble than 

it’s worth for the kind of circuits we have been dealing with so far. But when we go on to ac 

sources and the phasor domain later in the course, we will have to use it if the sources have 

different ac frequencies. We return to this idea later… 


