EeE 2300

Circuit Unalysis

CIRCUIT ANALYSIS MADE EASY PART III: KVL, KCL, AND OHM's LAW

Uniwersity of Houston
Len Trambetta

WHERE WE'RE GOING...

Where Are We Going?

Where we've been:

Where we're going:

This is a simple circuit with one loop, and one current. We analyzed it using KVL and Ohm's Law.

We will analyze circuits like this one, which has three currents. This will require Kirchhoff's Current Law (KCL).

VOLTAGE DIVIDER RULE

Voltage Divider Rule

- Ohm's Law and KVL give us the following equations...

$$
\begin{aligned}
& v_{R 1}=v_{S}\left(\frac{R 1}{R 1+R 2}\right) \\
& v_{R 2}=v_{S}\left(\frac{R 2}{R 1+R 2}\right)
\end{aligned}
$$

How can we derive those results?

Voltage Divider Rule

KVL

$$
v_{S}=v_{R 1}+v_{R 2}
$$

Ohm's Law

$$
v_{R 1}=i_{S} R_{1} \quad v_{R 2}=i_{S} R_{2}
$$

Algebra

$$
i_{S}=\frac{v_{S}}{R_{1}+R_{2}}
$$

Then...

$$
v_{R 1}=i_{S} R_{1}
$$

Finally $\ldots \quad v_{R 1}=v_{S}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)$

KIRCHHOFF'S CURRENT LAW

Houston Traffic

Kirchhoff's Current Law:
All other roads are closed for repairs!
in = out

Kirchhoff's Current Law

What current is flowing in R_{4} ? $\ldots \mathrm{R}_{2} ? \ldots \mathrm{v}_{\mathrm{S} 2} \ldots \mathrm{v}_{\mathrm{S} 1}$?
What is the relationship between $\mathrm{i}_{1}, \mathrm{i}_{2}$, and i_{3} ?

$$
\mathrm{KCL}: \quad \mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{i}_{3} \quad \mathrm{ln}=\text { out }
$$

Kirchhoff's Current Law

What if we had drawn it this way? Now what is KCL?

$$
\text { KCL: } \quad \mathrm{i}_{2}=\mathrm{i}_{1}+\mathrm{i}_{3} \quad \text { in }=\text { out }
$$

Kirchhoff's Current Law

Can I do THIS????

Sure!!

Kirchhoff's Current Law

Find the indicated currents...
$\mathrm{i}_{1}=70 \mathrm{~mA}$
$\mathrm{i}_{2}=15 \mathrm{~mA}$
$\mathrm{i}_{3}=? ?$
$\mathrm{i}_{1}=-24 \mathrm{~mA}$
$\mathrm{i}_{2}=$??
$\mathrm{i}_{3}=10 \mathrm{~mA}$

$$
\begin{aligned}
& \mathrm{i}_{1}=? ? \\
& \mathrm{i}_{2}=0.25 \mathrm{~mA} \\
& \mathrm{i}_{3}=0.20 \mathrm{~mA}
\end{aligned}
$$

Kirchhoff's Current Law

$\mathrm{i}_{1}=240 \mathrm{~mA}$
$\mathrm{i}_{1}=-240 \mathrm{~mA}$
$\mathrm{i}_{1}=$??
$\mathrm{i}_{2}=-150 \mathrm{~mA}$
$\mathrm{i}_{2}=$??
$\mathrm{i}_{2}=0.75 \mathrm{~mA}$
$\mathrm{i}_{3}=$??
$\mathrm{i}_{3}=150 \mathrm{~mA}$
$\mathrm{i}_{3}=0.20 \mathrm{~mA}$

CIRCUIT ANALYSIS USING KVL, KCL, AND OHM'S LAW

Analyze This!

- $\mathrm{V}_{\mathrm{R} 1}+$

Usually we know the voltage source values and the resistor values. We will assume that here.

How many KVL's can we write for this circuit?
How many KCL's can we write for this circuit?
\# of KVL's: 3
\# of KCL's: 2

Let's Do It: KVL

Let's Do It: KVL

- $\mathrm{V}_{\mathrm{R} 1}+$

$-\mathrm{V}_{\mathrm{R} 4}+\quad-\mathrm{V}_{\mathrm{R} 2}+$ They are not
$1 \quad-v_{S 1}+v_{R 3}+v_{R 4}=0$
$2 \quad-v_{R 3}-v_{R 1}+v_{S 2}+v_{R 2}=0$
algebraically independent - we can only use two of them (any two will do).

Let's Do It: KCL

There are two nodes for KCL.
$1 \quad i_{1}=i_{2}+i_{3}$
$2 \quad i_{2}+i_{3}=i_{1}$
What can we say about these two KCL
equations?

Let's Do It: KCL

Two nodes have been labeled.
$1 \quad i_{1}=i_{2}+i_{3}$

They are algebraically identical. We can only use one of them.

Let's Do It: KCL and KVL

We have three
equations: 2 KVL 's and 1 KCL .

Remember: we assume we know the voltage sources and resistor values.
$1 \quad i_{1}=i_{2}+i_{3}$
$2-v_{S 1}+v_{R 3}+v_{R 4}=0$

$$
3-v_{R 3}-v_{R 1}+v_{S 2}+v_{R 2}=0
$$

But now what? We have too many unknowns to go further - the resistor voltages and the three currents are all unknown.

Ohm's Law!!

$$
\begin{aligned}
& v_{R 1}=-i_{3} R_{1} \\
& v_{R 2}=i_{3} R_{2} \\
& v_{R 3}=i_{2} R_{3} \\
& v_{R 4}=i_{1} R_{4}
\end{aligned}
$$

We can use Ohm's Law to eliminate the resistor voltages...watch the signs!

Substitute these equations into KVL and get...

Let's Do It: KCL and KVL

$1 \quad i_{1}=i_{2}+i_{3}$
$2-v_{S 1}+i_{2} R_{3}+i_{1} R_{4}=0$
$3-i_{2} R_{3}+i_{3} R_{1}+v_{S 2}+i_{3} R_{2}=0$

Now we have three equations in three unknown currents! We can solve for the currents and then use Ohm's Law to get the resistor voltages.

YOU TRY!

You Try!

1. Label 3 currents and all resistor voltages. Watch the label rules!
2. Write 2 KVL equations and 1 KCL equation.
3. Write Ohm's Law for each of the resistor voltage variables.
4. Re-write your equations in terms of three unknown currents.

Numerical Values

My Answers

If your currents and voltages are labeled the way I have them, then the circuit variables are...

$$
\begin{array}{ll}
\mathrm{i}_{1}=-0.39497[\mathrm{~mA}] & \mathrm{v}_{\mathrm{a}}=0.4345[\mathrm{~V}] \\
\mathrm{i}_{2}=-1.31070[\mathrm{~mA}] & \mathrm{v}_{\mathrm{b}}=4.3034[\mathrm{~V}] \\
\mathrm{i}_{3}=-0.91562[\mathrm{~mA}] & \mathrm{v}_{\mathrm{c}}=-0.1966[\mathrm{~V}] \\
\mathrm{v}_{\mathrm{d}}=-0.8689[\mathrm{~V}]
\end{array}
$$

If you have labeled things differently, your results will be different.
The and

