Name: \qquad (please print)
Signature: \qquad
ECE 2300 -- Exam \#1
October 12, 2013

Keep this exam closed until you are told to begin.

1. This exam is closed book, closed notes. You may use one 8.5 " $\times 11$ " crib sheet, or its equivalent.
2. Show all work on these pages. Show all work necessary to complete the problem. A solution without the appropriate work shown will receive no credit. A solution that is not given in a reasonable order will lose credit. Clearly indicate your answer (for example by enclosing it in a box).
3. It is assumed that your work will begin on the same page as the problem statement. If you choose to begin your work on another page, you must indicate this on the page with the problem statement, with a clear indication of where the work can be found. If your work continues on to another page, indicate clearly where your work can be found. Failure to indicate this clearly will result in a loss of credit.
4. Show all units in solutions, intermediate results, and figures. Units in the exam will be included between square brackets.
5. Do not use red ink. Do not use red pencil.
6. You will have 90 minutes to work on this exam.
7. \qquad /20
8. \qquad /20
9. \qquad /30
10. \qquad /30

Total $=100$

Room for extra work

1. $\{20$ Points $\}$ Use the circuit below to solve this problem. Find the value of R, if the absorbed power by R_{L} is equal to $30[\mathrm{~mW}]$.

Room for extra work
2. $\{20$ Points $\}$ Find v_{o} by using the circuit shown below.

Room for extra work
3. $\{30$ Points $\}$ A device can be modeled as an ideal current source in parallel with a resistance. The device is shown in Figure 1. The characteristics of the device are given in terms of the relationship between the voltage across the device, and the current through the device, as shown in Figure 2. Two identical versions of this device are connected to a circuit using terminals a and b to show the polarity, as shown in Figure 3.
a) Find a model for the device showing terminals a and b.
b) Find the power delivered by Device 1 .

Figure 1

Figure 2

Room for extra work
4. $\{30$ Points $\}$ A multi-range voltmeter is shown in Figure 1. The meter uses an analog meter, marked with three ranges, each starting at zero, and going to $10[\mathrm{~V}]$, $30[\mathrm{~V}]$ and $50[\mathrm{~V}]$, respectively.
a) Find the values for R_{1}, R_{2}, and R_{3}.
b) Assume that a resistor R_{X} is placed between the $30[\mathrm{~V}]$ terminal and the Common terminal. Find R_{X} so that the voltage at the $50[\mathrm{~V}]$ terminal with respect to the Common terminal will be $150[\mathrm{~V}$] when the meter reads full scale.
c) With the R_{X} value you found in Part b) connected between the $30[\mathrm{~V}$] terminal and the Common terminal, and with the source in Figure 2 connected with terminal a connected to the $50[\mathrm{~V}]$ terminal and terminal \mathbf{b} connected to the Common terminal, find the reading on the $30[\mathrm{~V}]$ scale.
d) Repeat your steps in Part c), but this time connect the source in Figure 2 with terminal a connected to the $50[\mathrm{~V}]$ terminal and terminal \mathbf{b} connected to the $10[\mathrm{~V}$] terminal. Describe what would happen in this case.

Figure 2

Figure 1

Room for extra work

Solutions:

1. $\{20$ Points $\}$ Use the circuit below to solve this problem. Find the value of R, if the absorbed power by R_{L} is equal to $30[\mathrm{~mW}]$.

Since the power absorbed by R_{L} is $30[m w]$,

$$
P_{A B S . B Y . R_{L}}=0.030[w]=\frac{\left(v_{x}\right)^{2}}{5600[\Omega\}}
$$

Thus

$$
\left(v_{x}\right)^{2}=168[v]^{2}
$$

or

$$
v_{x}= \pm 12.96\{v\}
$$

So, the two solutions will be

$$
\begin{aligned}
& \frac{1[v]-12.96[v]}{R}+\frac{2[v]-12.96[v]}{R}+\frac{3[v]-12.96[v]}{R}=\frac{12.96[v]}{5600[\Omega\}} \\
& O R=\frac{1[v]+12.96[v]}{R}+\frac{2[v]+12.96[v]}{R}+\frac{3[v]+12.96\{v\}}{R}=\frac{-12.96\{v]}{5600[\Omega\}} \\
& R=-19.4[k \Omega]
\end{aligned}
$$

2. \{20 Points $\}$ Find v_{o} by using the circuit shown below.

Solution: Take KVL around the outside of the circuit, to get

$$
v_{0}+3[v]-10[v]+5[v]-10[v]=0
$$

Solving, we get

$$
v_{0}=12[v]
$$

3. $\{30$ Points $\}$ A device can be modeled as an ideal current source in parallel with a resistance. The device is shown in Figure 1. The characteristics of the device are given in terms of the relationship between the voltage across the device, and the current through the device, as shown in Figure 2. Two identical versions of this device are connected to a circuit using terminals a and b to show the polarity, as shown in Figure 3.
a) Find a model for the device showing terminals a and b.
b) Find the power delivered by Device 1 .

Figure 1

Figure 2

See next page:
a)
$K C L: \quad i_{D}+i S+\frac{V_{D}}{R_{S}}=0$

Using the graph,
$2[m A]+i s+\frac{5[V]}{R s}=0$
$9[m A]+i s+\frac{11[V]}{R s}=0$
$R_{s}=-857[\Omega]$

$$
i \mathrm{~s}=3,834[\mathrm{~mA}]
$$

b) Let's redraw the circuit w/ the Devices connected. Note that $\|[k \Omega]$ resistor is shorted, $33[k \Omega]$ resistor is ignored due to open circuit.

See next page.

Q4 Part b) continued
KVL loop (1): $i_{1} R s+i 3(-1,017[k \Omega])+i_{2} \cdot 20[k \Omega]=0$
Solving equations (1), (2) and (3) for unknowns $i 1, i z$ and is gives:

$$
i_{1}=i_{3}=4,23[\mathrm{~mA}]
$$

To find the power delivered by Device 1, we need to find the voltage across Device I (ND) and the current through Device I (id).

$$
\begin{aligned}
& i_{D}=i_{1}-i_{s}=4,23[\mathrm{~mA}]-3,834[\mathrm{~mA}]=0,396[\mathrm{~mA}] \\
& V_{D}=-i_{1} \cdot R_{s}=-4,23[\mathrm{~mA}] \cdot(-0,857[\mathrm{k} \Omega])=3,625[\mathrm{~V}] \\
& P_{D E L, D E V I C E}=V_{D} \cdot i_{D}=3,625[\mathrm{~V}] \cdot 0,396[\mathrm{~mA}]
\end{aligned}
$$

$$
P_{D E L, D E V I C E I}=1,435[\mathrm{mw}]
$$

4. $\{30$ Points $\}$ A multi-range voltmeter is shown in Figure 1. The meter uses an analog meter, marked with three ranges, each starting at zero, and going to 10 [V], $30[\mathrm{~V}]$ and $50[\mathrm{~V}]$, respectively.
a) Find the values for R_{1}, R_{2}, and R_{3}.
b) Assume that a resistor R_{X} is placed between the $30[\mathrm{~V}]$ terminal and the Common terminal. Find R_{X} so that the voltage at the $50[\mathrm{~V}]$ terminal with respect to the Common terminal will be $150[\mathrm{~V}$] when the meter reads full scale.
c) With the R_{X} value you found in Part b) connected between the $30[\mathrm{~V}$] terminal and the Common terminal, and with the source in Figure 2 connected with terminal a connected to the 50[V] terminal and terminal b connected to the Common terminal, find the reading on the $30[\mathrm{~V}]$ scale.
d) Repeat your steps in Part c), but this time connect the source in Figure 2 with terminal a connected to the $50[\mathrm{~V}]$ terminal and terminal \mathbf{b} connected to the $10[\mathrm{~V}]$ terminal. Describe what would happen in this case.

Figure 1

Figure 2

Solution: 1 aA t full scale, the current through all three resistors will be $3 S[m A]$. So, using the voltages, we have:

$$
R_{1}=\frac{50[v]-30[v]}{35[\mathrm{~mA}]}
$$

$$
R_{1}=571.4\{\Omega\}
$$

$$
R_{2}=\frac{30[v]-10[v]}{35[m \mathrm{~A}]}
$$

$$
R_{2}=571.4[\Omega]
$$

b) We add R_{x} to the diagram in Fig. I. At full scale, with $150\{v\}$ at the top with respect to Common, we have

$$
i_{A}=\frac{150[v]-30\{v\}}{571.4\{\Omega\}}=210[m A]
$$

4.b) continued. With $i_{B}=35[\mathrm{~mA}]$, since the meter is full scale, then by $K C L$, we have

$$
i_{x}=(210-35)[m A]=175[m A]
$$

Then, by Ohm's Law

$$
R_{x}=\frac{30[v]}{175[\mathrm{~mA}]}=171.4[\Omega]
$$

c) We are connecting $130[u]$ to a meter which we have just made, with $150\{u\}$ full scale. Since the scales are proportional,

$$
\begin{aligned}
& \frac{V_{\text {READING }}}{30\{v\}}=\frac{130\{v\}}{150\{v\}} \\
& V_{\text {READING }}=26\{v\}
\end{aligned}
$$

d) We draw the circuit, and get:

We label the current through the meter as i_{m}. This current must be between 0 and 35 [mA] to have a meaningful reading.

$$
R_{x}+R_{3}+4.29\{\Omega\}=457.1\{\Omega\}
$$

So, we can redraw this on the next page, as

Problem 4, Part d), continued.

Room for extra work

$$
457.1\{\Omega\} 11571.4\{\Omega\}=254\{\Omega\}
$$

By UDR,

$$
\begin{aligned}
& v_{D}=130\{v] \frac{254[\Omega]}{254[\Omega]+571.4[\Omega]} \\
& v_{D}=40.0[v] \\
& i_{m}=\frac{-v_{D}}{457.1[\Omega]}=-87.5[\mathrm{~mA}]
\end{aligned}
$$

This current is negative, and outside the range for a meaningful measurement. Thus, the meter will not show a meaning full reading.

