Name: \qquad (please print)

Signature:
Section (underline one): Trombetta Shattuck

ECE 2300 - Final Exam May 4, 2013

Keep this exam closed and face up until you are told to begin.

1. This exam is closed book, closed notes. You may use one $8.5 " \times 11^{\prime \prime}$ crib sheet, or its equivalent.
2. Show all work on these pages. Show all work necessary to complete the problem. A solution without the appropriate work shown will receive no credit. A solution which is not given in a reasonable order will lose credit. 3. It is assumed that your work will begin on the same page as the problem statement. If you choose to begin your work on another page, you must indicate this on the page with the problem statement, with a clear indication of where the work can be found. If your work continues on to another page, indicate clearly where your work can be found. Failure to indicate this clearly will result in a loss of credit.
3. Show all units in solutions, intermediate results, and figures. Units in the exam will be included between square brackets.
4. Do not use red ink. Do not use red pencil.
5. You will have 170 minutes to work on this exam.
6. \qquad /30
7. \qquad /20
8. \qquad 140
9. \qquad 140

Total \qquad /200

ECE 2300 Final Examination - May 4, 2013 - Page 2

Room for extra work

1. (30 points) When a $2[\mathrm{k} \Omega$] resistor is connected to terminals a and b in the circuit in Figure 1, the current i_{O} as defined in Figure 2 is $-2.119[\mathrm{~A}]$. When that $2[\mathrm{k} \Omega$] resistor is removed, and a current source of $120[\mathrm{~mA}]$ is connected between terminals a and b in its place, the voltage v_{O} as defined in Figure 3 is $750.46[\mathrm{~V}]$. If then a $-120[\mathrm{~V}]$ voltage source is connected in place of the current source between a and b, what will be the current i_{z} as defined in Figure 4?

Figure 2

Figure 3

ECE 2300 Final Examination - May 4, 2013 - Page 4

Room for extra work
2. (20 points) In the circuit below, find the power delivered by the dependent current source.

ECE 2300 Final Examination - May 4, 2013 - Page 6

Room for extra work
3. (20 points) There are two separate voltmeters available for use in a laboratory. One voltmeter has a full-scale reading of $200[\mathrm{~V}]$, and has an equivalent resistance of $6.8[\mathrm{M} \Omega]$. The second voltmeter has a full-scale reading of $150[\mathrm{~V}]$, and has an equivalent resistance of $25[\mathrm{M} \Omega]$. The plan is to increase the range of voltages that can be measured by putting the two voltmeters in series, and placing the series combination across an unknown voltage. Find the largest voltage that can be measured using the two voltmeters in series, assuming that the voltage will be determined by adding the voltages measured on the two voltmeters.

ECE 2300 Final Examination - May 4, 2013 - Page 8

Room for extra work
4. (20 points) Use the mesh-current method to write a complete set of equations that could be used to solve the circuit below. Do not simplify the circuit. Do not attempt to solve the equations. You must define all circuit variables. Do not skip any meshes.

ECE 2300 Final Examination - May 4, 2013 - Page 10

Room for extra work
5. (40 points) In the circuit given below, the switch was in position A for long time before it moved at $t=0$ to position B . The switch then moved back to A at $t=200[\mu \mathrm{~s}]$. Find $i_{L}(t)$ for $t \geq 200[\mu \mathrm{~s}]$.

ECE 2300 Final Examination - May 4, 2013 - Page 12

Room for extra work
6. (30 points) Find the Thévenin impedance $Z_{T H}$ as seen by the current source, at $\omega=1500[\mathrm{rad} / \mathrm{s}]$. Draw a circuit model for $Z_{T H}$, modeling it either as a resistance in series with an inductor or as a resistance in series with a capacitor.

$$
\begin{aligned}
& v_{S}(t)=15[\mathrm{~V}] \sin \left(\omega t+20^{\circ}\right) \\
& i_{S}(t)=32[\mathrm{~mA}] \cos \left(\omega t-22^{\circ}\right)
\end{aligned}
$$

ECE 2300 Final Examination - May 4, 2013 - Page 14

Room for extra work
7. (40 points) In the circuit below, the load is enclosed with a dashed line.
a) Find the value of the inductance L_{1} that will make the voltage $v_{S}(t)$ be in phase with the current $i_{X}(t)$.
b) Find the value of the power factor angle for the load that results from the value of L_{1} found in part a).
c) Find the value of the power factor of the load, if $L_{1}=3.9[\mathrm{mH}]$. Indicate whether this is a leading or a lagging power factor.
d) Find the apparent power absorbed by the load, if $L_{1}=3.9[\mathrm{mH}]$.

1. (30 points) When a $2[\mathrm{k} \Omega$] resistor is connected to terminals a and b in the circuit in Figure 1, the current i_{O} as defined in Figure 2 is $-2.119[\mathrm{~A}]$. When that $2[\mathrm{k} \Omega$] resistor is removed, and a current source of $120[\mathrm{~mA}]$ is connected between terminals a and b in its place, the voltage v_{O} as defined in Figure 3 is $750.46[\mathrm{~V}]$. If then a $-120[\mathrm{~V}]$ voltage source is connected in place of the current source between a and b, what will be the current i_{z} as defined in Figure 4?

Figure 2

Figure 3

We have all the uffrimation we need from. Figs. 2,3 :

$$
-13_{H}+i_{0}(\sqrt{17 t}+2(\times 20)=0
$$

$$
\therefore=-2.119(\mathrm{~A})
$$

$$
\Rightarrow \quad-v_{T H}-2.119 R_{T H}-4238=0
$$

Solving (1) and (2) together grus
$+2 \quad V_{T H}=483.1[\mathrm{M}] \quad R_{T H}=-2228[\Omega]$
110

$$
\begin{gathered}
-\eta_{n_{1}}+i_{2} r_{n+}-120=0 \\
l_{z}=\frac{r_{n_{1}}+120}{r_{n+1}} \\
l_{z}=-0.200 ?[\mathrm{~A}]
\end{gathered}
$$

we cold ale haik frowner Voc, Path or iso,

$$
\begin{aligned}
& i_{50} \\
& -120+2200 i_{m 1}+10 C i i_{m 1}-i_{m_{2}} ;=0 \quad i_{m 1}= \\
& \left.\left(c_{0}\right)\left(i_{m 1}-i_{n, 1}\right)+26: 24,6\right)_{k+2}=0 \quad \operatorname{lins}_{3}= \\
& i_{n, 2}-i_{n+3}=0,2 \\
& i_{\omega}=-i i_{2} \quad i_{n+4}=-2.5 i \omega \quad i_{s_{x}}=-0.2168[\mathrm{~A}] \\
& i_{s c}=i_{m 3}-i_{\text {a. } 4} \\
& \text { - OR - } \\
& \frac{V_{A}}{2654.6}+\frac{V_{A}}{1000}+\frac{V_{A}+120}{2+200}=0 \quad V_{A}= \\
& i_{\omega}=-\frac{v_{A}}{1000}-\frac{v_{H}+120}{2200} \quad i_{\omega}= \\
& i_{c c}=-0.2168[A ? \\
& i_{i x}=2.5 i_{u}-i_{\omega}-0.2 \\
& i_{3}:+6
\end{aligned}
$$

$+2$
$V_{A}=-120[U]+8 / \omega=-\frac{V_{B}-V_{A}}{10 x x}-\frac{V_{B}-v_{A}+120}{2200}$
$+8 \frac{V_{B}}{2(-21.6}+\frac{V_{B}-V_{A}}{1000}+\frac{V_{B}-V_{B}+20}{2200}=0$
$+5 \quad V_{B}=$
$+7 \%_{z}=-2.5 i \omega+i_{w}+0.2=$
$+6$

$$
-120+220 x i_{m_{1}}+10 x\left(i_{n_{1}}-i_{m_{2}}\right)=0
$$

$+3 \quad i_{m 2}-i_{\mathrm{m} 3}=6,2+61000 i_{\mathrm{m} 1}-\mathrm{mm}_{1} 1-120+2654,61 \mathrm{~m}=0$
$+3 \quad i_{104}=-2.5 i_{i}+4 \quad i_{w}=-i_{m 2}$
$\therefore 4 \quad l_{z}=i_{n+3}-i_{n+4}$

ECE 2300 Final Examination - May 4, 2013 - Page 21
2. (20 points) In the circuit below, find the power delivered by the dependent current source.

Solution: $i_{w}=-14[A]$

$$
\begin{gathered}
i_{x}=\frac{-12[v]}{27\{\Omega\}}=-444.44[\mathrm{~mA}] \\
p_{D E L . B Y .2 i_{w}}=-\left(2 i_{w}\right)\left(5\{\Omega] i_{x}\right)=-62.22[\mathrm{w}]
\end{gathered}
$$

3. (20 points) There are two separate voltmeters available for use in a laboratory. One voltmeter has a full-scale reading of $200[\mathrm{~V}]$, and has an equivalent resistance of $6.8[\mathrm{M} \Omega]$. The second voltmeter has a full-scale reading of $150[\mathrm{~V}]$, and has an equivalent resistance of $25[\mathrm{M} \Omega]$. The plan is to increase the range of voltages that can be measured by putting the two voltmeters in series, and placing the series combination across an unknown voltage. Find the largest voltage that can be measured using the two voltmeters in series, assuming that the voltage will be determined by adding the voltages measured on the two voltmeters.

Call the voltmeter with 200\{u] full-scale, voltmeter \#1
Call the voltmeter with 150 [u] fall-scale, voltmeter \#2

$$
\text { For Voltmeter \#1, full-scole current } \begin{aligned}
& =\frac{200[v]}{6.8[\mathrm{~m} \Omega]} \\
& =29.41[\mu \mathrm{~A}]
\end{aligned}
$$

$$
\text { For Voltmeter \#2, full-scale current } \begin{aligned}
& =\frac{150[\mathrm{vj}]}{25[\mathrm{~m} \Omega]} \\
& =6.00\{\mu \mathrm{~A}]
\end{aligned}
$$

If we put them in series, we are limited by the lower full-scale current, $6.00\{\mu \mathrm{~A}\}$. So the largest voltage we can read is

$$
\begin{aligned}
& V_{\text {MAX }}=6.00[\mu \mathrm{~A}](25+6.8)[\mathrm{mr}]=190.8[\mathrm{v}] \\
& \underbrace{25[\mathrm{~m} \Omega]}_{+v_{\text {MAX }}} \underbrace{6.8[\mathrm{~m} \Omega]} \overbrace{-}^{i_{m A x}}=6.00[\mu \mathrm{~A}]
\end{aligned}
$$

4. (20 points) Use the mesh-current method to write a complete set of equations that could be used to solve the circuit below. Do not simplify the circuit. Do not attempt to solve the equations. You must define all circuit variables. Do not skip any meshes.

10 meshes +4 dep. source variables $=14$ equations

$$
\begin{aligned}
& \text { (A) } i_{A} 2[\Omega\}+\left(i_{A}-i_{B}\right) 3\{\Omega\}=0 \\
& (B+F+I+J)\left(i_{B}-i_{A}\right) 3\{\Omega]+11[v]+i_{B}\left[7[\Omega]+\left(i_{F}-i_{C}\right) s(\Omega\}+13\{v]+\left(i_{J}-i_{G}\right) \geqslant[\Omega\}+\right. \\
& +i_{J} 9[\Omega]-24 v_{\omega}-14\{v]+\left(i_{F}-i_{E}\right) 6[\Omega\}=0 \\
& \text { (BF) } i_{B}-i_{F}=21 i_{\omega} \\
& \text { (FrI) } i_{F}-i_{I}=22[s] v_{X} \\
& \text { IcJ) } i_{J}-i_{I}=15\{\mathrm{~A}\}
\end{aligned}
$$

ECE 2300 Final Examination - May 4, 2013 - Page 24
(C) $\left(i_{c}-i_{F}\right) 5[\Omega]=0$
(D) $i_{D}=-16[\mathrm{~A}]$
(E) $i_{E}=12[\mathrm{~A}]$
(G) $-13\{v]-23\{\Omega\} i_{x}+\left(i_{G}-i_{J}\right) 7\{\Omega\}=0$
(H) $i_{H} 8\{\Omega\}+14\{v\}=0$
(in) $i_{w}=-i_{I}$
(ix) $i_{x}=i_{c}-i_{D}$
(v) $-v_{x}+\left(i_{F}-i_{I}\right) 10[\Omega]+\left(i_{F}-i_{E}\right) 6\{\Omega]+\left(i_{B}-i_{A}\right) 3[\Omega]+11[u]=0$
(v) $-v_{w}+\left(i_{J}-i_{G}\right) 7\{\Omega\}+i_{J} 9\{\Omega]-24 v_{w}=0$
5. (40 points) In the circuit given below, the switch was in position A for long time before it moved at $t=0$ to position B . The switch then moved back to A at $t=200[\mu \mathrm{~s}]$. Find $i_{L}(t)$ for $t \geq 200[\mu \mathrm{~s}]$.

Re-drow for $t<0$: iss source trance formation i on $30(\mathrm{~m}, \mathrm{~A}$?:

$$
\begin{aligned}
& \frac{v_{A}-12 v_{Y}}{2200}+\frac{v_{A}-6 t}{2200}+\frac{v_{A}-50}{1500}=0 \\
& v_{Y}=-\frac{v_{A}-66}{3200} \cdot 1000
\end{aligned}\left\{\begin{array}{l}
v_{A}=53,004[v] \\
v_{Y}=4.050[v\}
\end{array}\right.
$$

ICE 2300 Final Examination - May 4, 2013 - Page 26
$\left.t \varepsilon_{0} \quad i(0)-i\left(0^{+}\right)=-\frac{V_{A}-50}{1500}=-2.02\right)(\mathrm{mH}$?
Note that sciico the switch return ter Hus position after the "nc' switching evert, Hemin is also the final. steady state value for, i $=$

$$
\begin{aligned}
L_{i}(t \rightarrow 2) & =l_{i, s s}
\end{aligned}=-2.027[\mathrm{mH}]
$$

$x^{\prime \prime}$ Also, $l_{i}(\infty)=i_{L, c e}=-2.027$ [mAT firm above.

ESE 2300 Final Examination - May 4, 2013 - Page 27

$$
\begin{aligned}
& \left.\begin{array}{c}
V_{A}-12 V_{Y}+\frac{V_{A}}{2200}+\frac{V_{A}-1}{1500}=0 \\
V_{Y}=-V_{A} \cdot \frac{1000}{3200}
\end{array}\right\} \begin{array}{l}
V_{H}=0.2124[U] \\
V_{Y}=-0.0664[V]
\end{array} \\
& T_{T}=-\frac{Q_{n}-1}{1500}=0.251[m A] \\
& \times Q_{C} \Rightarrow C_{T H}=19051 \Omega 7 \quad L_{L}=L_{T H}=0.1050[\mathrm{~ms}] \\
& +2 \\
& \therefore \quad l_{L}(t)=-2.027[\mathrm{~mA}]+(47.97+2.027)[\mathrm{mA}] e^{-\frac{(t-0.2[\mathrm{~m}, \mathrm{~s})}{0.050[\mathrm{~ms}]}} \\
& \text { +5 } \quad\left[l_{L}^{\prime}(t)=-2.0 .27[m A]+50\left[11=e^{-(t-0.2[m+2)} 0.1050[\mathrm{~ms}] \quad t \geq 0.2[\mathrm{~ms}]\right.\right. \\
& +3
\end{aligned}
$$

6. (30 points) Find the Thévenin impedance $Z_{T H}$ as seen by the current source, at $\omega=1500[\mathrm{rad} / \mathrm{s}]$. Draw a circuit model for $Z_{T H}$, modeling it either as a resistance in series with an inductor or as a resistance in series with a capacitor.

$$
\begin{aligned}
& v_{S}(t)=15[\mathrm{~V}] \sin \left(\omega t+20^{\circ}\right) \\
& i_{S}(t)=32[\mathrm{~mA}] \cos \left(\omega t-22^{\circ}\right)
\end{aligned}
$$

We can sumply reduce the netwerorte at the frumeieds of the current sources. The voltage source is a short mi that case. Traneformung to ploaror conan glee.

い———.................

$$
\begin{aligned}
z_{2}=-120.8 \geqslant 11 z_{1} & =1.646-j 21,01[\Omega\} \\
& =21,0\rangle\langle-1,001 ? ?
\end{aligned}
$$

ECE 2300 Final Examination - May 4, 2013 - Page 29

Emally

$$
\begin{aligned}
& Z_{T H}=1210\left[9 ?+Z_{2}=1,646+j 189,0[\pi]\right. \\
& 189.2<E 90 \text { Fi? }
\end{aligned}
$$

$+12$

$$
Z_{T H}: \frac{1,646[\Omega] \quad 12[\mathrm{mH}]}{-M-12 n}
$$

Posetire unergunery pant mecour we have an liductior, ame

$$
\omega L=199 \therefore L=\frac{189}{1500}=126[\mathrm{mit}]
$$

7. (40 points) In the circuit below, the load is enclosed with a dashed line.
a) Find the value of the inductance L_{1} that will make the voltage $v_{S}(t)$ be in phase with the current $i_{X}(t)$.
b) Find the value of the power factor angle for the load that results from the value of L_{1} found in part a).
c) Find the value of the power factor of the load, if $L_{1}=3.9[\mathrm{mH}]$. Indicate whether this is a leading or a lagging power factor.
d) Find the apparent power absorbed by the load, if $L_{1}=3.9[\mathrm{mH}]$.

$50 \cos (800[\mathrm{rad} / \mathrm{s}] t)[\mathrm{V}]$
a) For the voltage and current to be in phase, the impedance of the load must be purely real.

$$
Z_{\text {LOAD }}=j 800\left[\frac{\mathrm{rad}}{\mathrm{~s}}\right] L_{1}+6[\Omega]+\frac{1}{j(800)\left(2.50 \times 10^{-6}\right)}\{\Omega\}
$$

So, setting the imaginary part $=0$, we have

$$
800\left[\frac{\mathrm{rad} d}{\mathrm{~s}}\right] L_{1}-5\left[s_{1}\right]=0
$$

$$
L_{1}=\frac{5}{800}[\mathrm{H}]=6.25[\mathrm{mH}]
$$

b) For a purely real load, the power factor angle $=0$
see next page
c) for $L_{1}=3.9[\mathrm{mH}$,

$$
\begin{aligned}
z_{\text {LOAD }}=(6+3.12 ;-5 j)\{\Omega] & =(6-1.88 j)[\Omega] \\
& =\left(6.288\left\langle-17.40^{\circ}\right)[\Omega]\right.
\end{aligned}
$$

So $p f=\cos \left(-17.40^{\circ}\right)=0.954$ leading
d)

$$
\begin{aligned}
& \bar{I}_{x, r m s}=\frac{50 / \sqrt{2}}{11-1.88 j}\left[A_{r m s}\right]=3.168<9.699^{\circ}\left[A_{r m s}\right] \\
& S_{a b s . b y . l o a d}=\left|\bar{I}_{x, r m s}\right|^{2} z_{\text {LOAD }}=(3.168)^{2}\left(6.288 \angle-17.40^{\circ}\right)[\text { VA } \\
& A_{\text {pparent }} \text { Power }=|S| \text {, so } \\
& \quad\left|S_{a b s . b y . l o a d}\right|=63.1[V A]
\end{aligned}
$$

