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Introduction to Plane Waves

A plane wave is the simplest solution to Maxwell’s equations for a wave that 
travels through free space.

 The wave does not require any conductors – it exists in free space.

 A plane wave is a good model for radiation from an antenna, if we are far 
enough away from the antenna. 
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The Electromagnetic Spectrum
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http://en.wikipedia.org/wiki/Electromagnetic_spectrum

0 /c fλ =



Source Frequency Wavelength

U.S.  AC Power 60 Hz 5000 km

ELF Submarine Communications 500 Hz 600 km

AM radio (KTRH) 740 kHz 405 m

TV ch. 2 (VHF) 60 MHz 5 m

FM radio (Sunny 99.1) 99.1 MHz 3 m

TV PBS ch. 8 (VHF ch 8) 183 MHz 1.6 m

TV KPRC ch. 2 (UHF ch. 35) 599 MHz 50 cm

Cell Phone (4G) 1.9 GHz 16 cm

μ-wave oven 2.45 GHz 12 cm

Police radar (X-band) 10.5 GHz 2.85 cm

Cell Phone (Verizon 5G mmWave) 28 GHz 1.1 cm

THz 1000 GHz 0.3 mm

Light 5×1014 [Hz] 0.60 µm

X-ray 1018 [Hz] 3 Å

The Electromagnetic Spectrum (cont.) 
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0 /c fλ = [ ] [ ]0 cm 30 / GHzfλ ≈Note :



TV and Radio Spectrum

VHF TV: 55-216 MHz (channels 2-13)

Band I : 55-88 MHz (channels 2-6)
Band III: 174-216 MHz (channels 7-13)

FM Radio: (Band II) 88-108 MHz

UHF TV: 470-806 MHz (channels 14-69)

AM Radio: 520-1610 kHz

Digital TV broadcast takes place primarily in UHF and VHF Bands I & III.
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Note: 
Monopole antenna are ideally about one-quarter of a wavelength in length. 

Dipole antennas are ideally about one-half of a wavelength in length. 



Comparison of Wired Systems with Wireless Systems

Power loss from waveguiding system: 

Power loss from antenna broadcast: 21/ r
2 re α−

(always better for very large r)
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A B

Antenna

Transmission line system

r

Wireless systems using antennas will always be better (lower loss) 
than wired (transmission line) systems for large distances. 



Comparison of Wired Systems with Wireless Systems (cont.)
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88

Distance Coax Fiber Wireless Wireless
1 m 0.4 0.0003 28.2 -

10 m 4 0.003 48.2 -
100 m 40 0.03 68.2 -
1 km 400 0.3 88.2 39.3
10 km 4000 3 108.2 59.3

100 km - 30 128.2 79.3
1000 km - 300 148.2 99.3

10,000 km - 3000 168.2 119.3
100,000 km - - 188.2 139.3

1,000,000 km - - 208.2 159.3
10,000,000 km - - 228.2 179.3

100,000,000 km - - 248.2 199.3

RG59

1 GHz

Single Mode Two Dipoles 34m Dish+Dipole

Attenuation in dB

Comparison of Wired Systems with Wireless Systems (cont.)



Vector Wave Equation

Start with Maxwell’s equations in the phasor domain:

E j H
H J j E

ωµ
ωε

∇× = −
∇× = +

Faraday’s law

Ampere’s law

Assume free space:

0J Eσ= =

0

0

E j H
H j E

ωµ
ωε

∇× = −
∇× =

0 0,ε ε µ µ= =

We then have:

Ohm’s law:
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Vector Wave Equation (cont.)

Take the curl of the first equation and then substitute the 
second equation into the first one:

( ) ( )
( )

0

0 0

E j H

j j E

ωµ

ωµ ωε

∇× ∇× = − ∇×

= −

0 0 0k ω µ ε≡

( ) 2
0 0E k E∇× ∇× − = “Vector wave equation”

Define:

Then

0

0

E j H
H j E

ωµ
ωε

∇× = −
∇× =

Wavenumber of free space [rad/m]
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Vector Helmholtz Equation

( ) 2
0 0E k E∇× ∇× − =

Recall the vector Laplacian identity:

( ) ( )2V V V∇ ≡∇ ∇⋅ −∇× ∇×

Hence, we have

( ) 2 2
0 0E E k E∇ ∇⋅ −∇ − =

Also, from the electric Gauss law we have (in free space):
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0 0

1 1 0vE D ρ
ε ε

∇ ⋅ = ∇ ⋅ = =



Hence, we have:

Vector Helmholtz equation2 2
0 0E k E∇ + =

Recall the property of the vector Laplacian in rectangular coordinates:

2 2 2 2ˆ ˆ ˆx y zV x V y V z V∇ = ∇ + ∇ + ∇

Taking the x component of the vector Helmholtz equation, we have

2 2
0 0x xE k E∇ + = Scalar Helmholtz equation
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Reminder:
This identity only holds in 
rectangular coordinates.

Vector Helmholtz Equation (cont.)



Plane Wave Field

Assume

Then

or

ˆ ( )xE x E z=

2 2
0

2 2 2
2
02 2 2

2
2
02

0

0

0

x x

x x x
x

x
x

E k E
E E E k E
x y z

d E k E
dz

∇ + =

∂ ∂ ∂
+ + + =

∂ ∂ ∂

+ =

Solution: 0
0( ) jk z

xE z E e−= 0 0 0( )k ω µ ε=

The electric field is polarized in the x direction, and 
the wave is propagating (traveling) in the z direction. 

0
0( ) jk z

xE z E e+=

For wave traveling in the 
negative z direction:
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Note: 
The electric field is constant 

in the z = 0 plane.



where

0( ) jkz
xE z E e−=

0 r rk kω µε µ ε= =

For a plane wave traveling in a  lossless dielectric medium 
(does not have to be free space):

0

0

r

r

ε ε ε
µ µ µ
=
=

(wavenumber of dielectric medium)

Plane Wave Field (cont.)
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Lossless Dielectric Medium:



0( ) jkz
xE z E e−=

The electric field of a plane wave in a lossless medium propagates in z
exactly as does the voltage on a lossless transmission line (filled with 
the same material):

LC kβ ω ω µε= = =

Transmission Line:

Plane Wave Field (cont.)
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Comparison between plane wave and 
wave on a lossless transmission line

Plane Wave:

0( ) j zV z V e β−=

They have the same wavenumber!



The H field is found from:

so

E j Hωµ∇× = −

( )( )

( )

1 ˆ

1 ˆ

1 ˆ ( )

x

x

x

H x E z
j

d Ey
j dz

y jk E
j

ωµ

ωµ

ωµ

= − ∇×

 = −  
 

= − −

ˆ ˆ ˆ

x y z

x y z

E
x y z

E E E

∂ ∂ ∂
∇× =

∂ ∂ ∂

0( ) jkz
xE z E e−=
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Plane Wave Field (cont.)



Intrinsic Impedance

We then have

Hence

ˆ x
kH y E
ωµ
 

=  
 

x

y

E
H k

ωµ ωµ µ η
εω µε

= = = =

where

0
r

r

µ µη η
ε ε

≡ = (intrinsic impedance of the medium)

y x
kH E
ωµ
 

= 
 

0
0

0

376.730313 [ ]µη
ε

= Ω

Intrinsic impedance of free-space:
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c

c

µ π

ε
µ

−

−

= ×

= ×

≡ ×
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Poynting Vector

The complex Poynting vector is given by

0

0

ˆ
1ˆ

jkz

jkz

E x E e

H y E e
η

−

−

=

=

( )*1
2

S E H= ×

Hence, we have:

( )

( ) ( )

*

0
0

*
0 0

2
0

1 ˆ
2
1 ˆ

2
1 ˆ

2

jkz jkz

jkz jkz

ES z E e e

z E e E e

z E

η

η

η

− −

− +

 
=  

 

=

=

2
20ˆ [VA/m ]

2
E

S z
η

=

( ) ( )
2

0 2ˆRe [W/m ]
2
E

t S z
η

= =S
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(no VARS)

For a wave traveling in a lossless dielectric medium:

Note: 
k and η are real here 
(lossless medium).



Phase Velocity

pv ω
β

=

1
p dv c

µε
= =

From our previous discussion on phase velocity for transmission 
lines, we know that for a wave on a transmission line: 

Hence, for a plane wave in a lossless dielectric medium (letting β = k):

(speed of light in the dielectric material)

so

Notes: 

 All plane waves travel at the same speed in a lossless medium, regardless of the frequency. 
 This implies that there is no dispersion in a lossless medium, which in turn implies that there is no 

distortion of the signal.
 The phase velocity of a plane wave in a lossless medium is the same as that of a wave on a lossless 

transmission line that is filled with the same material.
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1
pv

k
ω ω

ω µε µε
= = =



Wavelength

02 2 2 1 /
2

d
g d

r r r r

c c f
k ff f

λπ π πλ λ
ω µε π µε µε µ ε µ ε

= = = = = = = =

0
g d

r r

λλ λ
µ ε

= =

From our previous discussion on wavelength for transmission lines, 
we know that 

Hence, we have

For free space:
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2
g

πλ
β

=

Hence, for a plane wave in a lossless dielectric medium (letting β = k):

0 /c fλ =



Summary (Lossless Case)

0

0

2
0

1

2

jkz
x

jkz
y

z

E E e

H E e

E
S

η

η

−

−

=

=

=

p d
r r

cv c
µ ε

= = 0
g d

r r

λλ λ
ε µ

= =
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k ω µε=

0
r

r

µµη η
ε ε

= = 0
0

0

376.730313 [ ]µη
ε

= Ω

E
H

x

y

z

S



Lossy Medium

E j H
H J j E

ωµ
ωε

∇× = −
∇× = +

J Eσ=

Return to Maxwell’s equations:

Assume Ohm’s law:

( )
H E j E

j E
σ ωε
σ ωε

∇× = +

= +

Ampere’s law:

We define an effective (complex) permittivity εc that accounts for conductivity:

cj jωε σ ωε= + c j σε ε
ω
 ≡ −  
 
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Ocean

E
x

z

Set



c

E j H
H j E

ωµ
ωε

∇× = −
∇× =

Maxwell’s equations then become:

The lossy form is exactly the same as we have for the lossless case, with

cε ε→

Hence, we have for a lossy medium:

0

0
1

jkz
x

jkz
y

E E e

H E e
η

−

−

=

=

ck ω µε=

c

µη
ε

=

(complex)

(complex)
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Lossy Medium (cont.)

E j H
H j E

ωµ
ωε

∇× = −
∇× =

Lossy Lossless



Examine the wavenumber:

k k jk′ ′′= −

0 0
jkz jk z k z

xE E e E e e′ ′′− − −= =

cε k

ck ω µε= c j σε ε
ω
 = −  
 

0
0

k
k
′ ≥
′′ ≥

Denote:

k
k

β
α

′↔
′′↔

Compare with lossy TL:
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/2j jz z e z eθ θ

π θ π

= =

− < ≤

Reminder about 
principal branch:

Lossy Medium (cont.)



( ) 0
jk z k z

xE z E e e′ ′′− −=

gλ

z

0
k zE e ′′−

2
g k

πλ =
′
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( ),0x zE

( ) ( )0 0, cos k z
x z t E t k z eω φ ′′−′= − +E

0t =

0
0 0

jE E e φ=

Lossy Medium (cont.)



1/pd k′′≡

The “depth of penetration” dp is defined.

k ze ′′−

z

( )xE z 1

1 0.37e−


pd
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( ) 0
jk z k z

xE z E e e′ ′′− −=

(choose  E0 = 1)

Lossy Medium (cont.)

1pk d′′ =



( )
2 2

* * 2 20 0
*

1 1ˆ ˆ ˆ
2 2 2 2

k z j k z
x y

E E
S E H z E H z e z e eφ

η η
′′ ′′− −= × = = =

0

0
1

jk z k z
x

jk z k z
y

E E e e

H E e e
η

′ ′′− −

′ ′′− −

=

=

The complex Poynting vector is

j

c

e φµη η
ε

= =

( )
2

20Re cos
2

k z
z z

E
S t S eφ

η
′′−= = 2k ze ′′−

z

( )zS z
1

1 /pd k′′=

2 0.14e− =
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Lossy Medium (cont.)

Note: The angle between 
the Ex and Hy phasors is φ.



1/pd k′′≡

28

Lossy Medium (cont.)

( )Im( )k k jk k k′ ′′ ′′= − = −

0 0

, c
c rc rj jεσ σε ε ε ε

ω ε ωε
  ≡ − = = −   

   

Summary for Depth of Penetration Formula:

0 0 0/c c rck k kω µε ε ε ε= = =



Example

Ocean water:

0

81
4 [S/m]

rε
σ
µ µ

=
=
=

Assume  f = 2.0 GHz:

0
0

c rj jσ σε ε ε ε
ω ωε

   = − = −   
    

( )( )0 81 35.95 [F/m]c jε ε= −

0 0 0 0c rc rck kω µ ε ω µ ε ε ε= = = ( )386.022 81.816 [1/m]k j= −

1/pd k′′= 0.01222 [m]pd =

2 /g kλ π ′= 0.01628 [m]gλ =

(These values are fairly constant up through 
low microwave frequencies.)

29

( )81 35.95rc jε = −

386.022 [rad/m]k′ =

81.816 [nepers/m]k′′ =



Example (cont.)

f dp [m]

1 [Hz]                   251.6

10 [Hz]                 79.6

100 [Hz]               25.2 

1 [kHz]                 7.96

10 [kHz]               2.52

100 [kHz]             0.796 

1 [MHz]                0.262

10 [MHz]              0.080

100 [MHz]            0.0262

1.0  [GHz]            0.013

10.0 [GHz]           0.012

100 [GHz]            0.012

The depth of penetration 
into ocean water is shown 
for various frequencies. 
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1/pd k′′=

Note: 
The relative permittivity 

of water starts 
changing at very high 
frequencies (above 

about 2GHz), but this is 
ignored here.

0

81
4 [S/m]

rε
σ
µ µ

=
=
=



Loss Tangent

c j σε ε
ω
 = −  
 
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Recall:

dσ σ= = conductivity of dielectric material

To be more general:

eff=dσ σ σ= =  conductivity of dielectric material
(accounts for actual conductivity + atomic and molecular loss effects)

effective

0

tan
r

σ σδ
ωε ωε ε

≡ =

c jε ε ε′ ′′= −

Sometimes we write:

tan εδ
ε
′′

=
′

, σε ε ε
ω

′ ′′= =

0/rc c r rjε ε ε ε ε′ ′′= = −

0

,r r r
σε ε ε
ωε

′ ′′= =



Practical notes on loss tangent: 

32

 For some materials (mostly good conductors), it is the conductivity that is approximately 
constant with frequency. 

Ocean water:  σ ≈ 4 [S/m]

 For other materials (mostly good insulators), it is the loss tangent that is approximately 
constant with frequency. In this case the effective permittivity is mainly due to molecular 
loss effects.

Teflon:  tanδ ≈ 0.001

Loss Tangent (cont.)



Low-Loss Limit: tanδ << 1

We approximate the wavenumber for small loss tangent:

( )
0

2 tan 1pd ε δ
µ σ

 ≈ << 
 
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(The derivation is omitted.)

In the low-loss limit, the depth of penetration is independent of frequency.



f dp [m]                tanδ

1 [Hz]                   251.6           8.88×108

10 [Hz]                 79.6             8.88×107

100 [Hz]               25.2             8.88×106

1 [kHz]                 7.96             8.88×105

10 [kHz]               2.52             8.88×104

100 [kHz]             0.796           8.88×103

1 [MHz]                0.262           888

10 [MHz]              0.080           88.8

100 [MHz]            0.0262         8.88

1.0  [GHz]            0.013           0.888

10.0 [GHz]           0.012           0.0888

100 [GHz]            0.012           0.00888

Ocean water
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“Low-loss” region

0

tan
r

σδ
ωε ε

=

Ocean Water

0

81
4 [S/m]

rε
σ
µ µ

=
=
=

tan 1δ <<



Distilled Water
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Complex Relative Permittivity for Pure (Distilled) Water

rε ′

rε ′′

Frequency [GHz]

0 0

c
rc r r

j jε ε εε ε ε
ε ε

′ ′′− ′ ′′= = = − eff

0

,r r r
σε ε ε
ωε

 
′ ′′= = 

 

tan r

r

εεδ
ε ε

′′′′
= =

′ ′ Note: 
For pure distilled water, 
the effective conductivity 

σ is due entirely to 
molecular loss effects, 

since pure water is almost 
a perfect insulator (no 

ions to carry current as for 
ocean water).



Appendix: Summary of Formulas
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0( ) jkz
xE z E e−=

x

y

E
H

η=

0
r

r

µ µη η
ε ε

= =

0
0

0

376.730313 [ ]µη
ε

= Ω

d
r r

cc
µ ε

=

0
g d

r r

λλ λ
ε µ

= =

k ω µε=

0
c
f

λ =

Lossless

p dv c=



Appendix: Summary of Formulas (cont.)
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0

tan
r

ε σ σδ
ωε ωε εε

′′
≡ = =

′

c jε ε ε′ ′′= −

0( ) jkz
xE z E e−=

x

y

E
H

η=

c

µη
ε

=

2
g k

πλ =
′

k k jk′ ′′= −

1 /pd k′′≡

ck ω µε=

Lossy

c j σε ε
ω
 = −  
 
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