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Polarization

The polarization of a plane wave refers to the direction of the 
electric field vector in the time domain.

We assume here that the wave is traveling in the positive z direction.
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Consider a plane wave with both x and y components
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Polarization (cont.) 

Phasor domain:

3

x

y

xE

yE



Time Domain:
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Depending on b/a and β, three different cases arise:
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 Linear polarization
 Circular polarization
 Elliptical polarization

Polarization (cont.) 
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Power Density: *1
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Assume lossless medium (η is real):
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Polarization (cont.) 

Hence



At  z = 0:
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Linear Polarization 

6

( )
( )

cos

cos
x

y

a t

b t

ω

ω β

=

= +

E

E

0β β π= =or

0β
β π

+ =
− =

sign :
sign :

x
j

y

E a
E be β

= =

=

real number

Recall :



(shown for β = 0)

Linear Polarization (cont.) 

7

This is simply a “tilted” plane wave.
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At  z = 0:
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Circular Polarization 
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Circular Polarization (cont.) 

9

( )tE

x

y

a

( )tφ



( ) ( )d t
t t

dt
φ

φ ω ω= ⇒ = 

IEEE convention

10

Circular Polarization (cont.) 
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Note: 
The mechanical angular 

velocity is the same as the 
electrical radian frequency ω.

Your thumb is in the direction 
of propagation, and the 

fingers are in the direction of 
the rotation in time.



There is opposite rotation in space and time, due to the minus sign.
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Examine how the field varies in both space and time:

Rotation in space vs. rotation in time 
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Phasor domain

Time domain

Circular Polarization (cont.) 



Notice that the rotation in space
matches the left hand!
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A snapshot of the electric field vector, showing the vector at different points. 

Circular Polarization (cont.) 
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Animation of LHCP wave

http://en.wikipedia.org/wiki/Circular_polarization

(Use pptx version in full-screen mode to see motion.)

Circular Polarization (cont.) 



Circular polarization is often used in wireless communications to 
avoid problems with signal loss due to polarization mismatch.

 Misalignment of transmit and receive antennas
 Reflections off of buildings
 Propagation through the ionosphere

Receive antenna

The receive antenna will always receive a signal, 
no matter how it is rotated about the z axis. 

However, for the same incident power density, an optimum linearly-polarized wave will give the 
maximum output signal from this linearly-polarized receive antenna (3 dB higher than from an 
incident CP wave). The linear receive antenna “throws away” half of the incident signal.
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Circular Polarization (cont.) 
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Two ways in which circular polarization can be obtained:

This antenna will radiate a RHCP signal in the positive z
direction, and LHCP in the negative z direction.

Method 1)
Use two identical antennas rotated by 90o, and fed 90o out of phase.
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Circular Polarization (cont.) 
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Realization of method 1 using a 90o delay line
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Circular Polarization (cont.) 
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An array of CP antennas

Circular Polarization (cont.) 



18

The two antennas can realized by using two different modes of a 
single microstrip or dielectric resonator antenna.

Circular Polarization (cont.) 

P1 = length of path 1

2 1 / 4gP P λ= +



Method 2) Use an antenna that inherently radiates circular polarization.

Helical antenna for WLAN communication at 2.4 GHz 

http://en.wikipedia.org/wiki/Helical_antenna
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Circular Polarization (cont.) 
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Helical antennas on a GPS satellite

Circular Polarization (cont.) 
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Other Helical antennas

Circular Polarization (cont.) 



An antenna that radiates circular polarization will also receive circular polarization 
of the same handedness, and be blind to the opposite handedness.

(The proof is omitted.)
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Circular Polarization (cont.) 

Note: 
It does not matter how the 
receive antenna is rotated 

about the z axis.

RHCP wave

RHCP Antenna
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Summary of Possible Polarization Scenarios

1) Transmit antenna is LP, receive antenna is LP

 Simple, works good if both antennas are aligned.
 The received signal is less if there is a misalignment.

2) Transmit antenna is CP, receive antenna is LP

 Signal can be received no matter what the alignment is.
 The received signal is 3 dB less then for two aligned LP antennas.

3) Transmit antenna is CP, receive antenna is CP (of the same handedness)

 Signal can be received no matter what the alignment is.
 There is never a loss of signal, no matter what the alignment is.
 The system is now more complicated.

Circular Polarization (cont.) 



Includes all other cases that are not linear or circular

Elliptic Polarization 

The tip of the electric field vector stays on an ellipse.
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Elliptic Polarization (cont.) 
Rotation Property
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(This is proved in Appendix B.)

( )
( )

cos

cos
x

y

a t

b t

ω

ω β

=

= +

E

E

x
j

y

E a
E be β

= =

=

real number

Recall :



Rotation Rule

Here we give a simple graphical method for determining 
the type of polarization (left-handed or right handed).
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First, we review the concept of leading and lagging sinusoidal waves.
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Two phasors: A and B

0 β π< <

0π β− < <

Note:
We can always assume that the phasor A
is on the real axis (zero degrees phase) 
without loss of generality, since it is only 
the phase difference between the two 

phasors that is important.

Rotation Rule (cont.) 
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Note: 
A lagging sinusoidal wave will 

appear shifted to the right (later 
time) on an oscilloscope trace.



( ) 0a β π< < LHEP

Observation:    

The electric field vector rotates 
in time from the leading axis to 

the lagging axis.
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Now consider the case of a plane wave.

Rotation Rule (cont.) 
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( ) 0b π β− < < RHEP
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Rotation Rule (cont.) 

Observation:    

The electric field vector rotates 
in time from the leading axis to 

the lagging axis.
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Rotation Rule:

In time, the electric field vector rotates from the 
leading axis to the lagging axis.
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The rule works in both cases, so we can call it a general rule:

Rotation Rule (cont.) 



[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −

What is this wave’s polarization?

Example

31

Rotation Rule (cont.) 
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Example (cont.) 

Therefore, in time the wave rotates from the z axis to the x axis. 
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Rotation Rule (cont.) 
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LHEP or LHCP

Note:                        and 
2x zE E πβ≠ ≠ ± (so this is not LHCP)
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Rotation Rule (cont.) 

Example (cont.) 
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Your thumb is in the direction 
of the power flow. 
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Rotation Rule (cont.) 

Example (cont.) 
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Axial Ratio (AR) and Tilt Angle (τ)

35

Note: In dB we have ( )dB 10AR 20log AR=
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τ = tilt angle
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Axial Ratio and Handedness

tan 2 tan 2 cosτ γ β=

Tilt Angle

Note: 
The tilt angle τ is ambiguous by the 

addition of ± 90o.
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Axial Ratio (AR) and Tilt Angle (τ ) Formulas
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These formulas assume that the wave has Ex and Ey components, and the power is flowing in the +z direction.



tan 2 tan 2 cosτ γ β=Tilt Angle:

The title angle τ is zero or 90o if:

/ 2β π= ±

Note on Tilt Angle
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Example 
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Re-label the coordinate system: x x
z y
y z

→
→
→ −

Find the axial ratio and tilt angle.

[ ]ˆˆ (1 ) (2 ) jkyE z j x j e= + + −
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In order to use the formulas for tilt 
angle and axial ratio, we need to 
relabel to coordinate system so 

that the wave has Ex and Ey
components, and the power is 

flowing in the +z direction.

Note: The new coordinate system needs to be 
a valid right-handed coordinate system:
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Example (cont.) 
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LHEP

x

z

y

xE

zE



41

o16.845τ =
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Example (cont.) 
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Note: We are not sure 
which choice is correct:

We can make a quick time-domain sketch to be sure.

Example (cont.) 

( )tE

x

y

τ

LHEP



43

( )
( )

cos

cos
x

y

a t

b t

ω

ω β

=

= +

E

E

Example (cont.) 

o

1
0.6324
1.249[rad] 71.565

a
b
β

=
=

= =

o

AR 1.768
16.845τ

=

=

LHEP

Given:

Results:

Summary 

( )tE

x

y

τ

LHEP



cos( )
cos cos sin sin

y b t
b t b t

ω β

ω β ω β

= +

= −

E

so 2

cos sin 1x x
y b b

a a
β β

     = − −        

E E
E

2
2 2cos siny x x

b bb
a a

β β   − = − −      
E E E

2 2
2 2 2 2 2cos 2 cos siny x x y x

b b bb
a a a

β β β
      + − = −            

E E E E E

cosx a tω=E

or

Squaring both sides, we have

Here we give a proof that the tip of the electric field vector must stay on an ellipse.
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Appendix A
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This is in the form of a quadratic expression:
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Collecting terms, we have
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Appendix A (cont.)
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Hence, this is an ellipse.

so

(determines the type of curve)
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Discriminant:

Appendix A (cont.)

(This follows from analytic geometry.)
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Here we give a proof of the rotation property.
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Take the derivative:
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Appendix B (cont.)

The term in square 
brackets is always 

positive.
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