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Waveguiding Structures

A waveguiding structure is one that carries a 
signal (or power) from one point to another 

without having energy escape. 

There are three common types:
 Transmission lines
 Fiber-optic guides
Waveguides (hollow pipes)
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An alternative to a waveguiding system is a wireless system using antennas.



Waveguiding Structures (cont.)

 Transmission lines
 Fiber-optic guides
Waveguides (hollow pipes)
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Three common types of waveguiding structures:



Transmission lines

( )( )j R j L G j Cγ α β ω ω= + = + +

zk j jγ β α= − = −

0z rk LC k kω ω µε ε= = = =

Lossless:

 Has two conductors running parallel
 Can propagate a signal at any frequency (in theory)
 Becomes lossy at high frequency 
 Can handle low or moderate amounts of power 
 Has signal distortion due to loss
 May or may not be immune to interference
 Does not have Ez or Hz components of the fields (TEMz) 

Properties

(nonmagnetic filling)
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Fiber-Optic Guide
Properties

 Has a single dielectric rod 
 Can propagate a signal at any frequency (in theory)
 Can be made very low loss (no metal + low-loss glass) 
 Has minimal signal distortion 
 Very immune to interference 
 Not suitable for high power
 Has both Ez and Hz components of the fields (“hybrid mode”)
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Fiber-Optic Guide (cont.)

Two types of fiber-optic guides:

1) Single-mode fiber

2) Multi-mode fiber

Carries a single mode. Requires the fiber diameter 
to be small relative to a wavelength. This is the 
lowest loss type of fiber.

Has a fiber diameter that is large relative to a 
wavelength. It operates on the principle of total 
internal reflection (critical angle effect).
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Multi-Mode Fiber

http://en.wikipedia.org/wiki/Optical_fiber
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cθ θ>

θ



8

Multi-Mode Fiber (cont.)

air max rodsin sin
2 cn n πθ θ = − 

  max rodsin cos cnθ θ=

At left end of rod (input), Snell’s law gives us:

There is a maximum angle θmax at 
which the beam can be incident 

from outside the rod.

cθ
/ 2 cπ θ−

maxθ
rodn

Assume cladding is air

At the critical angle

maxθ θ>

( )o
rod airsin sin 90 1cn nθ = =

( )1
rodsin 1/c nθ −⇒ =

( )2 2
rodcos 1 sin 1 1/c c nθ θ⇒ = − = −

( )2
max rod rodsin 1 1/n nθ = −



Waveguide

 Has a single hollow metal pipe
 Can propagate a signal only at high frequency: f > fc

 The width a must be at least one-half of a wavelength λd

 Has signal distortion, even in the lossless case
 Immune to interference
 Can handle large amounts of power
 Has low loss (compared with a transmission line)
 Has either Ez or Hz component of the fields (TMz or TEz)  

Properties

https://en.wikipedia.org/wiki/Waveguide_(radio_frequency)
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Inside microwave oven

Rectangular waveguide

Note: The pipe may be filled with a material having εr. ( )0 /d rλ λ ε=

a x

y

brε



Waveguide (cont.)
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Coax

E

Waveguide

 The coax has higher loss and is more susceptible to dielectric 
breakdown (can handle less power).

Waveguide vs. Coax

 The electric field and surface current of the coax are concentrated near the 
narrow inner conductor (very strong electric field and current density there). 
This gives more loss and also more susceptibility to dielectric breakdown.

 The waveguide is usually hollow, and thus has no dielectric loss. 

a x

y

b

E



Waveguide (cont.)

Wavenumber inside a waveguide (derived later):

( )1/22 2
z ck k k= −

k ω µε= (wavenumber of material inside waveguide)

ck k=frequency for which

2 2:c z cf f k k k> = − = real

2 2:c z cf f k j k k< = − − = imaginary

(propagation)

(evanescent decay)

Cutoff frequency fc for a lossless waveguide (k is real):
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where

/ck aπ= 10for dominant TE  mode



Field Expressions for a Guided Wave

All six field components of a guided wave can be expressed 
in terms of the two fundamental field components Ez and Hz. 

Assumption:

( ) ( )
( ) ( )

0

0

, , ,

, , ,

z

z

jk z

jk z

E x y z E x y e

H x y z H x y e

−

−

=

=
(This is the definition of a guided wave.)

A proof of this “statement” is given in Appendix A.

Statement:

"Guided-wave theorem"
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See the table on the next slide for the results.



2 2 2 2
z z z

x
z z

j H jk EE
k k y k k x

ωµ   − ∂ ∂
= −   − ∂ − ∂   

2 2 2 2
z z z

y
z z

j H jk EE
k k x k k y
ωµ   ∂ ∂

= −   − ∂ − ∂   

2 2 2 2
z z z

x
z z

j E jk HH
k k y k k x
ωε   ∂ ∂

= −   − ∂ − ∂   

2 2 2 2
z z z

y
z z

j E jk HH
k k x k k y

ωε   − ∂ ∂
= −   − ∂ − ∂   

Summary of Fields
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Field Expressions of a Guided Wave (cont.)



TEMz Wave

0
0

z

z

E
H

=
=

2 2 0zk k− =

To avoid having a completely zero field (see table on previous slide):

Assume a TEMz wave:

zk k=TEMz

Hence,
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TEMz Wave (cont.)

Examples of TEMz waves:

In each case the fields do not have a z component ! 

 A wave on a transmission line* 
 A plane wave 
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zk k=

×

×

×

× ×

×

×

×

Coax

E
H

Plane wave

E H

S

x

y

z

* Exactly true if there is 
no conductor loss.



Relation Between E and H for any TEMz Mode:
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TEMz Wave (cont.)

( )ˆE z Hη= − ×

The electric and magnetic fields of a TEMz wave are perpendicular to 
each other, and the amplitudes of them are related by η.

A proof is given in Appendix B.

[ ]( )0 0 376.7303r

r

µµη η η
ε ε

= = = Ω (intrinsic impedance of filling material)



Waveguide Modes

In a waveguide, the fields cannot be TEMz.
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( )1/22 2
z ck k k k= − ≠

Ω



Waveguide Modes (cont.)

In a waveguide (hollow pipe of metal), there are two types of modes:

TMz:  Hz = 0,    Ez ≠ 0

TEz:   Ez = 0,    Hz ≠ 0
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Each type of mode can exist independently.



Appendix A

(illustrated for Ey)

or

1 z x
y

H j E
H HE

j x z

ωε

ωε

∇× =

∂ ∂ = − + ∂ ∂ 

Now solve for Hx :

E j Hωµ∇× = −
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1 z
y z x

HE jk H
j xωε

∂ = − − ∂ 

Proof of Guided Wave Theorem



E j Hωµ∇× = −

1

1

yz
x

z
z y

EEH
j y z

E jk E
j y

ωµ

ωµ

∂ ∂
= − − ∂ ∂ 

 ∂
= − + ∂ 

Substituting this into the equation for Ey yields the result

Next, multiply by

1 1z z
y z z y

H EE jk jk E
j x j yωε ωµ

    ∂ ∂
= − − − +    ∂ ∂    

( ) 2j j kωµ ωε− =
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Appendix A (cont.)



2 2z z
y z z y

H Ek E j jk k E
x y

ωµ ∂ ∂
= − +

∂ ∂

2 2 2 2
z z z

y
z z

j H jk EE
k k x k k y
ωµ   ∂ ∂

= −   − ∂ − ∂   

Solving for Ey, we have:

This gives us

The other three components Ex, Hx, Hy may be found similarly.
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( )2 2 z z
z y z

H Ek k E j jk
x y

ωµ ∂ ∂
− = −

∂ ∂

Combining terms,

Appendix A (cont.)



E j Hωµ∇× = −

yz
x

EE j H
y z

ωµ
∂∂

− = −
∂ ∂

Faraday's Law:

Take the x component of both sides:

( ) y xjk E j Hωµ− − = −

( ) ( )0, , , jkz
y yE x y z E x y e−=Assume that the field varies as

Hence,

Therefore, we have y

x

E
H k

ωµ ωµ µ η
εω µε

= − = − = − = −
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Appendix B

Relation Between E and H for any TEMz Mode



Now take the y component of both sides:

Hence,

Therefore, we have

E j Hωµ∇× = −

z x
y

E E j H
x z

ωµ∂ ∂
− + = −
∂ ∂

( ) x yjk E j Hωµ− = −

x

y

E
H k

ωµ ωµ µ η
εω µε

= = = =

Hence, x

y

E
H

η=

23

Appendix B (cont.)



These two equations may be written as a single vector equation:

( )ˆE z Hη= − ×

The electric and magnetic fields of a TEMz wave are perpendicular to 
each other, and the amplitudes of them are related by η.

Summary: y

x

E
H

η= − x

y

E
H

η=

24

Appendix B (cont.)
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