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Here we present an overview of Maxwell’s equations. A much 
more thorough discussion of Maxwell’s equations may be found 
in the text and class notes for ECE 3318:

http://courses.egr.uh.edu/ECE/ECE3318

Notes 10: Electric Gauss’s law
Notes 18: Faraday’s law
Notes 28: Ampere’s law
Notes 28: Magnetic Gauss law

Extra reference: D. Fleisch, A Student’s Guide to Maxwell’s Equations, Cambridge 
University Press, 2008. (This is on reserve in the Library.)

Overview



Electromagnetic Fields

Four vector quantities

E electric field                  [Volt/meter] 

D electric flux density [Coulomb/meter2] 

H magnetic field               [Amp/meter]

B magnetic flux density [Weber/meter2] or [Tesla]

Each are functions of space and time
e.g. E(x,y,z,t)

J electric current density [Amp/meter2]

ρv electric charge density [Coulomb/meter3]
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Reminder:
The Handscript SF font is used 
to denote time-varying vectors.



MKS units

Length – meter  [m]
Mass – kilogram [kg]

Time – second  [s]

Some common prefixes and the power of ten each represent are listed below 

femto - f - 10-15

pico - p - 10-12

nano - n - 10-9

micro    - μ - 10-6

milli - m - 10-3

mega  - M - 106

giga    - G - 109

tera     - T - 1012

peta   - P - 1015

centi   - c   - 10-2

deci    - d   - 10-1

deka   - da - 101

hecto  - h   - 102

kilo     - k - 103

4



0

v

t

t

ρ

∂
∇× =−

∂
∂

∇× = +
∂

∇⋅ =
∇ ⋅ =

B
E

D
H J

B
D

Maxwell’s Equations

(Time-varying, differential form)

5



Maxwell
James Clerk Maxwell (1831–1879)

James Clerk Maxwell was a Scottish mathematician and 
theoretical physicist. His most significant achievement was the 
development of the classical electromagnetic theory, synthesizing 
all previous unrelated observations, experiments and equations 
of electricity, magnetism and even optics into a consistent theory. 
His set of equations—Maxwell's equations—demonstrated that 
electricity, magnetism and even light are all manifestations of the 
same phenomenon: the electromagnetic field. From that moment 
on, all other classical laws or equations of these disciplines 
became simplified cases of Maxwell's equations. Maxwell's work 
in electromagnetism has been called the "second great 
unification in physics", after the first one carried out by Isaac 
Newton.

Maxwell demonstrated that electric and magnetic fields travel 
through space in the form of waves, and at the constant speed of 
light. Finally, in 1864 Maxwell wrote A Dynamical Theory of the 
Electromagnetic Field where he first proposed that light was in 
fact undulations in the same medium that is the cause of electric 
and magnetic phenomena. His work in producing a unified model 
of electromagnetism is considered to be one of the greatest 
advances in physics.

(Wikipedia)
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Maxwell’s Equations (cont.)
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Questions: When does a magnetic field produce an electric field? When does an 
electric field produce a magnetic field? When does a current flow produce a 
magnetic field? When does a charge density produce an electric field?



Charge Density

8

( )
0

, , limv V

Q dQx y z
V dV

ρ
∆ →

∆
= =

∆

Example: Protons are closer together as we move to the right.
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Current Density Vector
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I S∆ = ∆J

Eσ

J
+
+
+

S∆

I∆

Medium

Current flow is defined to be in the direction that positive charges move in.

2A/m =  current density vectorJ

Note: If negative charges are moving, we can pretend that positive charges are moving in the opposite direction.



Current Density Vector (cont.)
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Material σ [S/m]
Silver 6.3×107

Copper 6.0×107

Copper (annealed) 5.8×107

Gold 4.1×107

Aluminum 3.5×107

Zinc 1.7×107

Brass 1.6×107

Nickel 1.4×107

Iron 1.0×107

Tin 9.2×106

Steel (carbon) 7.0×106

Steel (stainless) 1.5×106

http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity

σ=J E

Ohm’s law

σ

E

J
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Current through a tilted surface:

( )ˆI n S∆ = ⋅ ∆J

Current Density Vector (cont.)

Eσ

J
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Medium



Current Density Vector (cont.)
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Note:
The direction of the unit normal vector 

determines whether the current is measured 
going up or down through the surface.
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Law of Conservation of Electric 
Charge (Continuity Equation)
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Flow of electric 

current out of volume 
(per unit volume)

Rate of decrease of electric 
charge (per unit volume)
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This is the continuity equation in point or differential form.

( )vρ∇⋅ =Recall : D

(“zero identity”)



Continuity Equation (cont.)

Apply the divergence theorem:

Integrate both sides over an arbitrary volume V:
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Continuity Equation (cont.)

Physical interpretation:
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Hence

Right-hand side:



Continuity Equation (cont.)
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This implies that charge is never created or destroyed. 
It only moves from one place to another!

J

enclQ
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Maxwell’s Equations (cont.)

Note: Regular (not script) font is used for statics, just as it is for phasors.
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Maxwell’s Equations (cont.)



Constitutive Relations 

The characteristics of the media relate D to E and  H to B
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ε ε=
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permeability

-12
0
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0

 8.8541878 10  [F/m]

= 4 10  [H/m] ( )µ

ε

π

×

×



exact*

0 0

1c
µ ε

= (exact value that is defined)

Free Space
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8 2.99792458 10  [m/s]c ≡ ×

*Prior to 2019

(since 1983)
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[ ] [ ]7
2 2 10 N/m when 1 mxF d−= × =

Definition of I =1 Amp:

I

I

d

Fx2
x

# 1

# 2

Two infinite wires carrying DC currents

Definition of the Amp*:

2
0

2 2x
IF

d
µ
π

= 7
0 4 10 [H/m]µ π −= ×From ECE 3318:

Constitutive Relations (cont.) 

*Prior to 2019



Constitutive Relations (cont.) 

Free space, in the phasor domain:

This follows from the fact that 

( )a t aV⇔V

(where a is a real number)
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Example

Given the following electric field E in free space: 

22

( ) ( )( ) [ ]0 0 0
1ˆ cos sin V/mt E t k r
r

θ ω φ θ= − +E
Find the magnetic field H. 
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Example (cont.)
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Example (cont.)
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Alternative approach (in the time domain directly):
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Example (cont.)
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So All fields must be pure 
sinusoidal waves in 
the time-harmonic 

steady state.

0µ=B H



Example (cont.)
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( )( ) [ ]0
0 0 0

0

1ˆ sin cos A/mkE t k r
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 
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r

θ ω φ θ= − +E

This describes the far-field 
radiation from a small 

vertical dipole antenna.
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In a material medium:

  (
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permeability

0 = rε ε ε εr = relative permittivity

µr = relative permeability
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Material Properties

Note: The fields E and B are the physical fields, meaning they exert a force on 
a charged particle that can be measured. The other two fields are defined.

0 rµ µ µ=
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Material Properties (cont.) 
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Where does permittivity come from?

0D E Pε≡ +

1
i

V
P p

V ∆

≡
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+-

+-
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xE

+ −

0V

Water

Molecule:
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Linear material: 0 eP Eε χ=

Define:

0 rD Eε ε=Then

Note: χe > 0 for most materials

The term χe is called the 
“electric susceptibility.”

( )
0 0

0 1
e

e

D E E
E

ε ε χ
ε χ

= +

= +

1r eε χ≡ +

0D E Pε≡ +

so

Material Properties (cont.) 
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Teflon

Water

Styrofoam

Quartz

2.2
81
1.03
5

r

r

r

r

ε
ε
ε
ε

=
=
=
=

(a very polar molecule, fairly free to rotate)

Note: εr > 1 for most materials: 1 , 0r e eε χ χ≡ + >

Material Properties (cont.) 
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Where does permeability come from?

Because of electron spin, atoms tend to acts as little current loops, and hence 
as electromagnetics, or bar magnets. When a magnetic field is applied, the 
little atomic magnets tend to line up. 

0

1
µ

≡ −H B M

1
i

VV ∆

≡
∆ ∑M m ( )ˆi in iA=m

a

ˆin
i

2A aπ=

B

Material Properties (cont.) 

Electron:

Iron
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0 0µ µ= +B H M

mχ=M H

so

( )
0 0

0 1
m

m

µ µ χ
µ χ

= +

= +

B H H

H

( )1r mµ χ= +Define:

0 rµ µ=B HThen

The term χm is called the 
“magnetic susceptibility.”

Linear material:

Note: χm > 0 for most materials

Material Properties (cont.) 
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Note: Values can often vary depending on purity and processing.
http://en.wikipedia.org/wiki/Permeability_(electromagnetism)

Material Relative Permeability µr

Vacuum 1
Air 1.0000004

Water 0.999992
Copper 0.999994

Aluminum 1.00002
Silver 0.99998
Nickel 600
Iron 5000

Carbon Steel 100
Transformer Steel 2000

Mumetal 50,000
Supermalloy 1,000,000

Material Properties (cont.) 



Lorenz Force Law
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The fields E and B are the two physical fields, since they exert a force on a 
particle (the Lorenz force law). The D and H fields are the defined fields. 

( )q v= + ×F E B

Lorenz force law:

This experimental law gives us the force on a particle with charge q
moving with a velocity vector v.



Variation             Independent of Dependent on

Space Homogenous Inhomogeneous

Frequency          Non-dispersive         Dispersive               

Time Stationary Time-varying

Field strength     Linear Non-linear

Direction of         Isotropic Anisotropic
E or H

Terminology
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Properties of ε or µ



Isotropic Materials

Isotropic: This means that ε and μ are scalar quantities,
which means that D || E (and B || H )
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Here ε (or μ) is a tensor (can be written as a matrix)

This results in E and D NOT being in the same direction.
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D E
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D E D E
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ε

     
     = 

= 
=     

        


=  

Anisotropic Materials
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Example:

D Eε= ⋅
or

“biaxial medium”



0 0
0 0
0 0

x h x

y h y

z v z

D E
D E
D E

ε
ε

ε

     
     =     
          

Anisotropic Materials (cont.)
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Practical example: uniaxial substrate material

Teflon substrate 

Fibers (horizontal)

There are two different 
permittivity values, a 
horizontal one and a 

vertical one.



Anisotropic Materials (cont.)
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This column indicates that εv is being measured.

RT/duroid® 5870/5880/5880LZ High Frequency Laminates

https://www.rogerscorp.com/advanced-electronics-solutions/rt-duroid-laminates/rt-duroid-5870-laminates
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