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Poynting Theorem

The Poynting theorem is one of the most important in EM theory. It 
tells us the power flowing in an electromagnetic field.

John Henry Poynting (1852-1914)

John Henry Poynting was an English physicist. He was a 
professor of physics at Mason Science College (now the University 
of Birmingham) from 1880 until his death.

He was the developer and eponym of the Poynting vector, which 
describes the direction and magnitude of electromagnetic energy 
flow and is used in the Poynting theorem, a statement about energy 
conservation for electric and magnetic fields. This work was first 
published in 1884. He performed a measurement of Newton's 
gravitational constant by innovative means during 1893. In 1903 he 
was the first to realize that the Sun's radiation can draw in small 
particles towards it. This was later coined the Poynting-Robertson 
effect.

In the year 1884 he analyzed the futures exchange prices of 
commodities using statistical mathematics.

(Wikipedia)
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Poynting Theorem (cont.)
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Subtract, and use the following vector identity:

( ) ( ) ( )⋅ ∇× − ⋅ ∇× = ∇ ⋅ ×H E E H E H
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We then have:
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Poynting Theorem (cont.)



σ=J E
Next, assume that Ohm's law applies for the electric current: 
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Poynting Theorem (cont.)



From calculus (chain rule), we have that
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Poynting Theorem (cont.)

( ) 2

t t
σ ∂ ∂

∇ ⋅ × = − − ⋅ − ⋅
∂ ∂
B D

E H E H E

( ) ( ) ( )2 1 1
2 2t t

σ µ ε∂ ∂
∇ ⋅ × = − − ⋅ − ⋅

∂ ∂
E H E H H E E

( )

( ) 2

B AA B A B
t t t

AA A A
t t

∂ ∂ ∂
⋅ = ⋅ + ⋅

∂ ∂ ∂
∂ ∂

⇒ ⋅ = ⋅
∂ ∂

Note :



This may be written as
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Poynting Theorem (cont.)
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Final differential (point) form of Poynting’s theorem:
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( ) 2 2 21 1
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Poynting Theorem (cont.)



Volume (integral) form

Integrate both sides over a volume and then apply the divergence theorem:

( ) 2 2 21 1
2 2V V V V

dV dV dV dV
t t

σ µ ε∂ ∂   ∇ ⋅ × = − − −   ∂ ∂   ∫ ∫ ∫ ∫E H E H E

9

( ) 2 2 21 1
2 2t t

σ µ ε∂ ∂   ∇ ⋅ × = − − −   ∂ ∂   
E H E H E

( ) 2 2 21 1ˆ
2 2S V V V

n dS dV dV dV
t t

σ µ ε∂ ∂   × ⋅ = − − −   ∂ ∂   ∫ ∫ ∫ ∫

E H E H E

Poynting Theorem (cont.)

Divergence theorem



Final volume form of Poynting theorem in the most general case:

For a stationary surface:
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( ) 2 2 21 1ˆ
2 2S V V V

n dS dV dV dV
t t

σ µ ε∂ ∂   × ⋅ = − − −   ∂ ∂   ∫ ∫ ∫ ∫

E H E H E

( ) 2 221 1ˆ
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n dS dV dV dV
t t

σ µ ε∂ ∂   × ⋅ = − − −   ∂ ∂   ∫ ∫ ∫ ∫E H E H E


Poynting Theorem (cont.)

stationary surface



Poynting’s theorem:

Power dissipation as heat (Joule's law)

Rate of change of stored magnetic energy

Rate of change of stored electric energy

Left-hand side = power flowing into the region V.

(We assume here that S is stationary.)
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( ) 2 221 1ˆ
2 2S V V V

n dS dV dV dV
t t

σ µ ε∂ ∂   − × ⋅ = + +   ∂ ∂   ∫ ∫ ∫ ∫

E H E H E

Poynting Theorem (cont.)

Conservation of energy:



( ) ˆ
S

n dS− × ⋅ =∫ power flowing into the regionE H

( ) ˆ
S

n dS× ⋅ =∫ power flowing out of the regionE H

Or, we can say that

Define the Poynting vector: ≡ ×S E H

Hence
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ˆ
S

n dS⋅ =∫ power flowing out of the regionS

Poynting Theorem (cont.)



ˆ
S

n dS⋅ =∫ power flowing out of the regionS

Analogy:

ˆ
S

n dS⋅ =∫ current flowing out of the regionJ

J = current density vector

S = power flow vector
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Poynting Theorem (cont.)



Direction of power flow in W/m2
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Poynting Theorem (cont.)

= ×S E H

S

E

H

Poynting vector

Note: 
At high frequencies (e.g., light or x rays), it is often convenient 
to think of photons moving in space, carrying the power flow. 

The two points of view are consistent.



Power Flow

The power P flowing through the surface S (from left to right) is:

( ) ˆ
S

t n dS= ⋅∫P S

Surface S

n̂

= ×S E H
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Time-Average Poynting Vector

( ) ( ) ( ) ( )*1 Re
2

t t t E H= × = ×S E H

Assume sinusoidal (time-harmonic) fields:

( ) ( ){ }, , , Re , , j tx y z t E x y z e ω=E

( ) ( ){ }, , , Re , , j tx y z t H x y z e ω=H

From our previous discussion (Notes 2) about time averages, we know that
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Complex Poynting Vector

Define the complex Poynting vector:

We then have that

( )*1
2

S E H≡ ×

( ) ( )( ), , , = Re , ,x y z t S x y zS

Note: 
The imaginary part of the complex Poynting vector 

corresponds to the Vars/m2 flowing in space.
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The units of S are [VA/m2]. 



The complex power P flowing through the surface S (from left to right in 
the above figure) is:

Surface S

n̂

ˆ
S

P S n dS= ⋅∫

*1
2

S E H= ×
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( )
( )

Re P

Im P

=

=

Watts

Vars

Complex Poynting Vector (cont.)

Note: 
The direction of the unit normal 

determines whether the power flow is 
form left to right or from right to left.



Complex Poynting Vector (cont.)

What does Vars flowing in space mean?
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( )

2 21 1Vars 2
4 4

2
V

m e

H E dVω µ ε

ω

 = − 
 

= −

∫
W W

Equation for Vars flowing into a region (derivation omitted):

The Vars flowing into the region V is equal to the difference in the time-average magnetic 
and electric stored energies inside the region (times a factor of 2ω).

S

V

VARS
Question:

 does an inductor 
absorb positive or 

negative Vars?



Complex Poynting Vector (cont.)
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( ) ( )Watts Varsˆ
S

jP S n dS = += ⋅ − =∫ complex power flowing in 

VARS 
“consumed”

Power (watts)
consumed

Watts 

V

S Vars

n̂

( )Vars 2 m eω= −W W

2 21Watts
2V V

dV E dVσ σ= =∫ ∫E (heat dissipation inside the region)



Photons
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At high frequencies (e.g., light, x-rays), physicists like to think in terms of photons.

Np photons per m3

A
v

ˆz z=S S

c t∆ = ∆

Photons moving:

pE hf= (energy of photon)

( )( )Energy p p
z

p p

E A c t N
A t A t

E c N

∆
= =

∆ ∆
=

S

346.626068 10 [J s]h −= ×
(Planck’s constant)

z p pc E N=S



Photons (cont.)
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Example

A cell phone base station antenna transmits at 2.1 [GHz] with 100 
[W] of power. At 1 [km] away the power density is 10-4 [W/m2]. What 
is the photon density? 

( )( )4 8 34 910 2.99792458 10 6.626068 10 2.1 10z p p pc E N N− −= = = × × ⋅ ×S

11 32.40 10 photons/mpN  = ×  



Photons (cont.)
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p
p

E
p

c
= (momentum of photon)

Photons also carry momentum, and can therefore exert a force on objects.

Solar Sail



Example
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( )ˆ cosx tω=E

( ) ( )ˆ ˆcos / 4 sin 3 / 4y t z tω π ω π= − + +H

At z = 0: 

Find the Watts and Vars crossing the plane z = 0 (downward) through a 1 m2 area S.

x

y

z

S

ˆ ˆn z= −

( )

( )
( )
( )

sin cos / 2

sin 3 / 4

cos 3 / 4 / 2

cos / 4

x x

t

t

t

π

ω π

ω π π

ω π

= −

+

= + −

= +

so

Note :



Example (Cont.)
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ˆE x=
/4 /4ˆ ˆj jH y e z eπ π− += +

At z = 0: 

(phasor domain)

* /4 /4 21 1 1ˆˆ VA/m
2 2 2

j jS E H z e y eπ π+ −   = × = −    

( )

( ) [ ]/4 /4

ˆ ˆ

1 1 1 VA
2 2

z
S S S

j j

S

P S n dS S z dS S dS

e dS eπ π+ +

= ⋅ = ⋅ − = −

= − = −

∫ ∫ ∫

∫

( ) 1Re cos
2 4rP P π = = −  

 

( ) 1Im sin
2 4iP P π = = −  

 

[ ]

[ ]

1 W
2 2

1 VAR
2 2

r

i

P

P

= −

= −

Hence

x

y

z

S

ˆ ˆn z= −



Note on Circuit Theory

Although the Poynting vector can always be used to calculate power flow on a 
transmission line, circuit theory can also be used, and this is usually easier.

*1 ˆ
2f

S

P E H z dS = × ⋅ 
 ∫

*1
2fP VI=
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The second form is much easier to calculate!

Example (low frequency circuit): = fP power flowing down the system

I

LZ

S

V
z

+− V
+
−

Voltage phasor

Current phasor

(This is exact for a transmission line.)



Example: Parallel-Plate Transmission Line
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At  z = 0:

( ) 0
jkzV z V e−=

( ) 0
jkzI z I e−=

( ) 00V V=

( ) 00I I=

The voltage and current have 
the form of waves that travel 

along the line in the z direction.

E
H

x

y

h

w

+
- x

y

z

h

w

V

I

,ε µ

k ω µε=
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0ˆ( , ,0) VE x y y
h

 = −  
 

( ) 0ˆ, ,0 IH x y x
w

 =  
 

At  z = 0:

( )*1
2

S E H= ×

*
0 01 ˆ

2
V IS z
h w

  =   
  

Example (cont.)

(from ECE 3318)

+
- x

y

z

h

w

V

I

,ε µ

E
H

x

y

h
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Example (cont.)
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*
0 01 ˆ

2
V IS z
h w

  =   
  

0 0

ˆ
h w

fP S z dx dy= ⋅∫ ∫

( )
*

0 01
2f

V IP wh
h w

  =   
  

*
0 0

1
2fP V I=

We then have+
- x

y

z

h

w

V

I

,ε µ

E
H

x

y

h

w

  = 0fP z z= complex power flowing in the  direction at

so
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