ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 10
 Gauss's Law I

Notes prepared by the EM Group University of Houston

Gauss's Law

A charge q is inside a closed surface.

$$
\psi \equiv \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S
$$

$$
\psi=\left(\frac{q}{N_{f}}\right) N_{S}
$$

$N_{S} \equiv \#$ flux lines that go through S

Assume q produces N_{f} flux lines
From the picture:
$N_{S}=N_{f}($ all flux lines go through S)
Hence $\psi=q$

Gauss's Law (cont.)

The charge q is now outside the surface

$$
N_{S}=0
$$

(All flux lines that enter the surface must leave the surface.)

Hence

$$
\psi=\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=0
$$

Gauss's Law (cont.)

To summarize both cases, we have:

$$
\oint_{s}^{\underline{D} \cdot \hat{n} d S=Q_{\text {mad }}}
$$

We have proved that this is true for a point charge.

By superposition, this law must be true for arbitrary charges.

This is then called Gauss's law.

Gauss's Law (cont.)

Gauss's law:
Carl Friedrich Gauss

$$
\begin{gathered}
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{e n c l} \\
\hat{\underline{n}}=\text { outward normal }
\end{gathered}
$$

This surface S is called the "Gaussian surface".

Example

$$
\oint_{S_{1}} \underline{D} \cdot \underline{\hat{n}} d S=q \quad \oint_{S_{2}} \underline{D} \cdot \underline{\hat{n}} d S=0 \quad \oint_{S_{3}} \underline{D} \cdot \underline{\hat{n}} d S=2 q
$$

Note: $\underline{E} \neq 0$ on S_{2} !

Note: All of the charges contribute to the electric field in space.

Gauss's law can be used to obtain the electric field from charges in a simple way.

The problems must be highly symmetrical.

The problem must reduce to one unknown field component (in one of the three coordinate systems).

When Gauss's law works, it is usually easier to use than Coulomb's law.

Choice of Gaussian Surface

$$
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{e n c l}
$$

Rule 1: S must be a closed surface.
Rule 2: S should go through the observation point (usually called \underline{r}).

Guideline: Pick S to be \perp to \underline{E} as much as possible

$$
S \perp \underline{E} \quad \Rightarrow \quad \underline{\hat{n}} \| \underline{D}
$$

(This simplifies the dot product calculation.)

Example

Point charge

Example (cont.)

$$
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{\text {encl }}=q
$$

Assume $\underline{D}=\underline{\hat{r}} D_{r} \quad$ (only an r component)

$$
\begin{aligned}
& \oint_{S}\left(D_{r} \underline{\hat{r}}\right) \cdot \underline{\hat{r}} d S=q \\
& \oint_{S} D_{r} d S=q
\end{aligned}
$$

Assume $D_{r}=D_{r}(r)$ (only a function of r)
Then $\quad D_{r} \oint_{S} d S=q \quad$ or $\quad D_{r}\left(4 \pi r^{2}\right)=q$

Example (cont.)

We then have

$$
\mathrm{LHS}=\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=D_{r}\left(4 \pi r^{2}\right)
$$

$$
\mathrm{RHS}=Q_{\text {encl }}=q
$$

so

$$
\begin{aligned}
& D_{r}\left(4 \pi r^{2}\right)=q \\
& D_{r}=\frac{q}{4 \pi r^{2}}
\end{aligned}
$$

Hence

$$
\underline{D}=\underline{\hat{r}}\left(\frac{q}{4 \pi r^{2}}\right)\left[\mathrm{C} / \mathrm{m}^{2}\right] \Rightarrow \underline{E}=\underline{\hat{r}}\left(\frac{q}{4 \pi \varepsilon_{0} r^{2}}\right)
$$

Example (cont.)

Summary

Note About Spherical Coordinates

Note: In spherical coordinates, the LHS is always the same:

$$
\mathrm{LHS}=D_{r}\left(4 \pi r^{2}\right) \longleftarrow \text { Helpful shortcut! }
$$

Assumption:

$$
\begin{aligned}
& \left.\rho_{v}(r, \theta, \phi)=f(r) \quad \text { (a function of } r \text { only, not } \theta \text { and } \phi\right) \\
& \Rightarrow \underline{D}=\underline{\hat{r}} D_{r}(r) \\
& \Rightarrow \quad \text { LHS }=\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=\oint_{S} \underline{D} \cdot \frac{\hat{r}}{\uparrow} d S=\oint_{S} D_{r} d S=D_{r}\left(4 \pi r^{2}\right) \\
& \text { Spherical Gaussian surface } \\
& \text { From the mathematical form of } D_{r}
\end{aligned}
$$

Example

Hollow shell of uniform surface charge density

Find \underline{E} everywhere

Example (cont.)

Case a) $r<a$

LHS $=$ RHS
$D_{r}\left(4 \pi r^{2}\right)=Q_{\text {encl }}=0$

SO

$$
D_{r}=0
$$

Hence

$$
\underline{E}=\underline{0} \quad[\mathrm{~V} / \mathrm{m}]
$$

Example (cont.)

Case b) $r>a$

LHS $=$ RHS

$$
\begin{aligned}
& \qquad \begin{array}{l}
D_{r}\left(4 \pi r^{2}\right)=Q_{e n c l}=\rho_{s 0} 4 \pi a^{2} \\
\qquad \Rightarrow D_{r}=\frac{4 \pi a^{2} \rho_{s 0}}{4 \pi r^{2}} \\
\quad \Rightarrow D_{r}=\frac{Q}{4 \pi r^{2}} \quad\left(Q=\rho_{s 0} 4 \pi a^{2}\right)
\end{array} \\
& \text { Hence }
\end{aligned}
$$

$$
\underline{E}=\hat{\underline{r}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}}[\mathrm{~V} / \mathrm{m}]
$$

The electric field outside a sphere of uniform surface charge density is the same as from a point charge at the origin.

Example (cont.)

Summary

$r<a$
$\underline{E}=\underline{0} \quad[\mathrm{~V} / \mathrm{m}]$
$r>a$

$$
\underline{E}=\hat{\hat{r}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}}[\mathrm{~V} / \mathrm{m}]
$$

Note:

A similar result holds for the force due to gravity from a shell of material mass.

Example (cont.)

Important Point:

The electric field is discontinuous as we cross the boundary of a surface charge density.

Example

Solid sphere of uniform volume charge density

Find $\underline{E}(r)$ everywhere

Z

Case a) $r<a$

$\oint_{s} \underline{D} \cdot \underline{\hat{h}} d S=Q_{\text {enel }}$
$\Rightarrow D_{r}\left(4 \pi r^{2}\right)=Q_{\text {ent }}$
$Q_{\text {erel }}=\int_{V} \rho_{v}(\underline{r}) d V$

Gaussian surface S

Example (cont.)

Calculate RHS:

$$
\begin{aligned}
Q_{e n c l} & =\int_{V} \rho_{v 0} d V \\
& =\rho_{v 0} \int_{V} d V \\
& =\rho_{v 0}\left(\frac{4}{3} \pi r^{3}\right)
\end{aligned}
$$

Gaussian surface S

LHS $=$ RHS

$$
D_{r}\left(4 \pi r^{2}\right)=\rho_{\nu 0}\left(\frac{4}{3} \pi r^{3}\right)
$$

Example (cont.)

Hence, we have

$$
D_{r}=\rho_{v 0}\left(\frac{1}{3} r\right)
$$

$r<a$
The vector electric field is then:

$$
\underline{E}=\underline{\hat{r}} \rho_{v 0}\left(\frac{r}{3 \varepsilon_{0}}\right)[\mathrm{V} / \mathrm{m}]
$$

Example (cont.)

Case b) $r>a$

$$
\begin{aligned}
& \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{\text {encl }} \\
& \Rightarrow D_{r}\left(4 \pi r^{2}\right)=Q_{\text {encl }}
\end{aligned}
$$

$$
Q_{\text {encl }}=\rho_{v 0}\left(\frac{4}{3} \pi a^{3}\right)
$$

Hence, we have

$$
\begin{gathered}
D_{r}\left(4 \pi r^{2}\right)=\rho_{v 0}\left(\frac{4}{3} \pi a^{3}\right) \\
\Rightarrow D_{r}=\rho_{v 0}\left(\frac{a^{3}}{3 r^{2}}\right)
\end{gathered}
$$

Example (cont.)

We can write this as:

$$
\underline{E}=\underline{\hat{r}}\left(\frac{\rho_{v 0} a^{3}}{3 \varepsilon_{0} r^{2}}\right)\left(\frac{(4 / 3) \pi}{(4 / 3) \pi}\right)
$$

Hence

$$
\underline{E}=\hat{\underline{r}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

where

$$
Q=\rho_{v 0}\left(\frac{4}{3} \pi a^{3}\right)
$$

The electric field outside a sphere of uniform volume charge density is the same as from a point charge at the origin.

Summary

$$
\begin{aligned}
& \underline{E}=\underline{\hat{r}} \rho_{v 0}\left(\frac{r}{3 \varepsilon_{0}}\right)[\mathrm{V} / \mathrm{m}] \quad r<a \\
& \underline{E}=\underline{\hat{r}} \frac{\rho_{v 0} a^{3}}{3 \varepsilon_{0} r^{2}}=\underline{\hat{r}} \frac{Q}{4 \pi \varepsilon_{0} r^{2}}[\mathrm{~V} / \mathrm{m}] \quad r>a
\end{aligned}
$$

