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Gauss’s Law

Assume q produces Nf flux lines

qψ =

A charge q is inside a closed surface.

Hence

NS = Nf (all flux lines go through S)

S
f

q N
N

ψ
 

=   
 

2

NS ≡ # flux lines that go through S 

ˆ
S

D n dSψ ≡ ⋅∫

From the picture:

S  (closed surface)

ˆ ( )n outward normal

x

y

z

E

q



Gauss’s Law (cont.)

NS = 0

ˆ 0
S

D n dSψ = ⋅ =∫

The charge q is now outside the surface

(All flux lines that enter the 
surface must leave the surface.)

Hence

3

q
S



To summarize both cases, we have:

ˆ encl
S

D n dS Q⋅ =∫

By superposition, this law must be true for arbitrary charges.

Gauss’s Law (cont.)
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This is then called Gauss’s law. 

We have proved that this is true for a point charge. 



Gauss’s law:

ˆ encl
S

D n dS Q⋅ =∫

Gauss’s Law (cont.)

Carl Friedrich Gauss
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n̂ = outward normal

(his signature)

This surface S is called the “Gaussian surface”.



Example

1 2 3

ˆ ˆ ˆ0 2
S S S

D n dS q D n dS D n dS q⋅ = ⋅ = ⋅ =∫ ∫ ∫  

Note: All of the charges contribute to the electric field in space.

Note:  E ≠ 0 on S2 !
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Using Gauss’s Law
Gauss’s law can be used to obtain the electric field from charges 

in a simple way.

The problems must be highly symmetrical.

The problem must reduce to one unknown field component
(in one of the three coordinate systems).
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Note:
When Gauss’s law works, it is usually easier to use than Coulomb’s law.



Choice of Gaussian Surface

Rule 1:  S must be a closed surface.

Guideline: Pick S to be ⊥ to E as much as possible

ˆS E n D⊥ ⇒ 

Rule 2: S should go through the observation point (usually called r).

(This simplifies the dot product calculation.)
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ˆ encl
S

D n dS Q⋅ =∫

n̂

E

S



Example

Find E

Point charge
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q
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z



Example (cont.)

Assume

ˆ encl
S

D n dS Q q⋅ = =∫

Assume

( )r rD D r=

ˆ rD r D=

( )ˆ ˆr
S

r
S

D r r dS q

D dS q

⋅ =

=

∫

∫





r
S

D dS q=∫
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(only a function of r)

(only an r component)

( )24rD r qπ =orThen

ˆ ˆn r=

S

q

r

x

y

z

r



Example (cont.)
We then have

( )2

2

4

4

r

r

D r q

qD
r

π

π

=

=

2
0

ˆ
4

qE r
rπε

 
=  

 

Hence
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so

2
2 C/mˆ

4
qD r
rπ

   =     

( )2ˆLHS 4r
S

D n dS D rπ= ⋅ =∫

RHS enclQ q= =
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q

x

y

z

[ ]2
0

V/mˆ
4

qE r
rπε

 
=  

 

Example (cont.)

Summary



Note About Spherical Coordinates
Note: In spherical coordinates, the LHS is always the same: 

13

( )2ˆ ˆLHS 4r r
S S S

D n dS D r dS D dS D rπ= ⋅ = ⋅ = =∫ ∫ ∫  

( )ˆ rD r D r=

( ) ( ), , ( )v rr f r θ φρ θ φ = a function of  only, not  and 

Assumption:

( )2LHS 4rD rπ=

Spherical Gaussian surface From the mathematical form of Dr

Helpful shortcut!



Example

Find E everywhere

Hollow shell of uniform surface charge density
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x

y

z

0s sρ ρ=

a



Example (cont.)

( )24 0r enclD r Qπ = =

V/m0 [ ]E =

Case a) r < a
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Hence

0rD =
so

LHS = RHS

x

y

z

0s sρ ρ=

a

a

0sρ

r
r



Example (cont.)

( )

( )

2 2
0

2
0

2

2
02

4 4

4
4

4
4

r encl s

s
r

r s

D r Q a

aD
r

QD Q a
r

π ρ π

π ρ
π

ρ π
π

= =

⇒ =

⇒ = =

Case b) r > a

2
0

V/mˆ [ ]
4

QE r
rπε

=

The electric field outside a sphere of uniform surface charge density is 
the same as from a point charge at the origin.
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Hence

LHS = RHS

a
r

0sρ

r



Example (cont.)

Note:
A similar result holds for the force due to gravity from a 

shell of material mass.
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x
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z

0s sρ ρ=

a 2
0

V/mˆ [ ]
4

QE r
rπε

=

V/m0 [ ]E =

Summary

r a>

r a<



Example (cont.)

Important Point:
The electric field is discontinuous as we cross 

the boundary of a surface charge density.
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( )2
0/ 4Q aπε



Example

Find E (r) everywhere

Solid sphere of uniform volume charge density
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x
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z

0v vρ ρ=
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Example (cont.)

( )2

ˆ

4

encl
S

r encl

D n dS Q

D r Qπ

⋅ =

⇒ =

∫

Case a) r < a
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( )encl v
V

Q r dVρ= ∫

x

y

z

0v vρ ρ=

a

Gaussian surface S

r
r

a
0vρ



Example (cont.)

0

0

3
0

4
3

encl v
V

v
V

v

Q dV

dV

r

ρ

ρ

ρ π

=

=

 =  
 

∫

∫

Calculate RHS:
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( )2 3
0

44
3r vD r rπ ρ π =  

 

LHS = RHS

Gaussian surface S

r
r

a
0vρ



Example (cont.)

0
0

V/mˆ [ ]
3v
rE r ρ
ε

 
=  

 

0
1
3r vD rρ  =  

 

Hence, we have

The vector electric field is then:
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x
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0v vρ ρ=
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Example (cont.)

so

3
0

4
3encl vQ aρ π =  

 

Case b) r > a

[ ]
3

0
2

0

V/mˆ
3

v aE r
r

ρ
ε

 
=  

 

Hence, we have
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( )2

ˆ

4

encl
S

r encl

D n dS Q

D r Qπ

⋅ =

⇒ =

∫

( )2 3
0

3

0 2

44
3

3

r v

r v

D r a

aD
r

π ρ π

ρ

 =  
 

 
⇒ =  

 

Gaussian surface S

a r

r

0v vρ ρ=



Example (cont.)
We can write this as:

The electric field outside a sphere of 
uniform volume charge density is the 

same as from a point charge at the origin.

3
0

4
3vQ aρ π =  

 

( )
( )

3
0

2
0

4 / 3
ˆ

3 4 / 3
v aE r

r
πρ

ε π
  

=      

2
0

ˆ
4

QE r
rπε

=

where
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Hence

x

y

z

0v vρ ρ=

a

r a>

r



Example (cont.)

0
0

V/mˆ [ ]
3v
rE r ρ
ε

 
=  

 

[ ]
3

0
2 2

0 0

V/mˆ ˆ
3 4

v a QE r r
r r

ρ
ε πε

= =

Summary

Note:
The electric field is continuous as we 

cross the boundary of a volume 
charge density.
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r
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rE

( )0 0/ 3v aρ ε

r a>

r a<
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