ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 11
 Gauss's Law II

Notes prepared by the EM Group
University of Houston

Infinite uniform line charge

Example (cont.)

$$
\oint_{S} D \cdot \hat{n} d S=\underbrace{}_{e n c l}
$$

Assume $\underline{D}=\underline{\hat{\rho}} D_{\rho}(\rho)$

Note: The Gaussian surface cannot be an infinitely tall cylinder.

Example (cont.)

Side view

$$
\begin{aligned}
& \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{\text {encl }} \\
& \text { LHS }= \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S \\
&= \int_{S_{c}}\left(D_{\rho} \underline{\hat{\rho}}\right) \cdot \underline{\hat{\rho}} d S \\
&+\int_{S_{t}}\left(D_{\rho} \underline{\hat{\rho}}\right) \cdot \hat{\underline{\hat{z}}} d S \\
&+\int_{S_{b}}\left(D_{\rho} \underline{\hat{\rho}}\right) /(-\underline{\hat{z}}) d S
\end{aligned}
$$

Example (cont.)

LHS $=\int_{S_{c}}\left(D_{\rho} \underline{\hat{\rho}}\right) \cdot \underline{\hat{\rho}} d S=\int_{S_{c}} D_{\rho} d S=D_{\rho} \int_{S_{c}} d S=D_{\rho}(2 \pi \rho h)$
$\mathrm{RHS}=Q_{\text {encl }}=\rho_{l 0} h$

Hence,

$$
\begin{gathered}
D_{\rho}(2 \pi \rho h)=\rho_{l 0} h \\
\quad \Rightarrow D_{\rho}=\frac{\rho_{l 0}}{2 \pi \rho}
\end{gathered}
$$

We then have

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{\rho_{l 0}}{2 \pi \varepsilon_{0} \rho}\right) \quad[\mathrm{V} / \mathrm{m}]
$$

Side view

Example (cont.)

Summary

Note About Cylindrical Coordinates

Note: In cylindrical coordinates, the LHS is always:

$$
\mathrm{LHS}=D_{\rho}(2 \pi \rho h) \quad \text { Helpful shortcut! }
$$

Assumption:

$$
\begin{gathered}
\left.\rho_{v}(\rho, \phi, z)=f(\rho) \quad \text { (a function of } \rho \text { only, not } \phi \text { and } z\right) \\
\Rightarrow \operatorname{D}=\underline{\hat{\rho}} D_{\rho}(\rho) \\
\Rightarrow \mathrm{LHS}=\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=\oint_{S} \underline{D} \cdot \underset{{ }^{2}}{\hat{\rho}} d S=\oint_{S} D_{\rho} d S=D_{\rho}(2 \pi \rho h) \\
\quad \text { Cylindrical Gaussian surface } \quad \text { Since } D_{\rho} \text { is constant on cylinder }
\end{gathered}
$$

Finite uniform line charge

This example illustrates when Gauss's Law is not useful.

$$
\begin{aligned}
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S & =Q_{\text {encl }} \\
\text { but } \underline{D} & \neq \underline{\hat{\rho}} D_{\rho}
\end{aligned}
$$

* \underline{E} has more than one component!
* \underline{E} is not a function of only ρ !

Note:

Although Gauss's law is still valid, it is not useful in helping us to solve the problem.

We must use Coulomb's law.

Infinite cylinder of non-uniform volume charge density

Z

Example (cont.)

Example (cont.)

Side view

$$
\begin{aligned}
\text { RHS } & =Q_{\text {encl }}=\int_{V} \rho_{v} d V \\
& =\int_{-h / 2}^{h / 2} \int_{0}^{2 \pi} \int_{0}^{\rho} \rho_{v} \rho d \rho d \phi d z \\
& =h(2 \pi) \int_{0}^{\rho} \rho_{v} \rho d \rho \\
& =2 \pi h \int_{0}^{\rho}\left(3 \rho^{2}\right) \rho d \rho \\
& =\left.2 \pi h\left(\frac{3 \rho^{4}}{4}\right)\right|_{0} ^{\rho}
\end{aligned}
$$

so

$$
\mathrm{RHS}=Q_{\text {encl }}=\frac{3}{2} \pi h \rho^{4}
$$

Example (cont.)

LHS $=D_{\rho}(2 \pi \rho h)$
RHS $=\frac{3}{2} \pi h \rho^{4}$

LHS = RHS

Hence

$$
\begin{gathered}
D_{\rho}(2 \pi \rho h)=\frac{3}{2} \pi h \rho^{4} \\
\Rightarrow D_{\rho}=\frac{3}{4} \rho^{3}
\end{gathered}
$$

so

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{3 \rho^{3}}{4 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad \rho \leq a
$$

z

$\rho \leq a$

Example (cont.)

(b) $\rho>a$

$\mathrm{LHS}=D_{\rho}(2 \pi \rho h)$
$\mathrm{RHS}=Q_{\text {encl }}=\left.2 \pi h\left(\frac{3 \rho^{4}}{4}\right)\right|_{0} ^{a}$
so

$$
\begin{gathered}
Q_{\text {encl }}=\frac{3}{2} \pi h a^{4} \\
\text { LHS }=\text { RHS } \\
D_{\rho}(2 \pi \rho h)=\frac{3}{2} \pi h a^{4}
\end{gathered}
$$

Example (cont.)

$$
\begin{gathered}
D_{\rho}(2 \pi \rho h)=\frac{3}{2} \pi h a^{4} \\
\Rightarrow D_{\rho}=\frac{\frac{3}{4} a^{4}}{\rho}
\end{gathered}
$$

Hence, we have

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{3 a^{4}}{4 \varepsilon_{0} \rho}\right)[\mathrm{V} / \mathrm{m}], \quad \rho \geq a
$$

Note:

Outside the cylinder, the electric field is the same as that coming from an equivalent line charge located on the z axis at the center.

Example (cont.)

z

Summary

$$
\begin{aligned}
& \underline{E}=\hat{\hat{\rho}}\left(\frac{3 \rho^{3}}{4 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad \rho \leq a \\
& \underline{E}=\underline{\hat{\rho}}\left(\frac{3 a^{4}}{4 \varepsilon_{0} \rho}\right)[\mathrm{V} / \mathrm{m}], \quad \rho \geq a
\end{aligned}
$$

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{\rho_{l 0}^{e q}}{2 \pi \varepsilon_{0} \rho}\right)[\mathrm{V} / \mathrm{m}], \quad \rho \geq a \quad\left(\rho_{l 0}^{e q}=\frac{3}{2} \pi a^{4}[\mathrm{C} / \mathrm{m}]\right)
$$

Example

Infinite sheet of uniform surface charge density

Find the electric field vector everywhere

Example (cont.)

Example (cont.)

$$
\begin{aligned}
& \oint_{S}\left(D_{z} \underline{\hat{z}}\right) \cdot \underline{\hat{n}} d S=Q_{\text {encl }} \\
& \text { LHS }=\int_{S_{\text {eop }}}\left(D_{z} \underline{\hat{z}}\right) \cdot \underline{\underline{z}} d S \\
& \\
& \quad+\int_{S_{\text {puaten }}}\left(D_{z} \hat{\underline{z}}\right) \cdot(-\underline{\hat{z}}) d S
\end{aligned}
$$

so
LHS $=D_{z}^{+} A-D_{z}^{-} A$

Assume $\quad D_{z}^{-}=-D_{z}^{+}$

Example (cont.)

For the charge enclosed we have

$$
\mathrm{RHS}=Q_{\text {encl }}=\rho_{s 0} A
$$

Hence, from Gauss's law we have

$$
\left.\begin{array}{cc}
& \text { LHS }=\text { RHS } \\
& 2 A D_{z}^{+}=\rho_{s 0} A
\end{array}\right] \begin{aligned}
& \text { so } \\
& D_{z}^{+}=\frac{\rho_{s 0} A}{2 A}=\frac{\rho_{s 0}}{2}
\end{aligned}
$$

We then also have:
Therefore

$$
\underline{E}^{+}=\underline{\hat{z}}\left(\frac{\rho_{s 0}}{2 \varepsilon_{0}}\right)
$$

$$
\underline{E}^{-}=-\underline{\hat{z}}\left(\frac{\rho_{s 0}}{2 \varepsilon_{0}}\right)
$$

Example (cont.)

Summary

$$
\begin{aligned}
& \underline{E}= \pm \underline{\hat{z}}\left(\frac{\rho_{s 0}}{2 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}] ; \\
& + \text { for } z>0, \quad \text { for } z<0
\end{aligned}
$$

Example

$$
\begin{array}{l|l}
x=0 & \downarrow x
\end{array} \begin{aligned}
& \rho_{s 0}^{A} \\
& x=h \\
& \\
& \rho_{s 0}^{B}
\end{aligned}
$$

From superposition:
(a) $x>h \quad \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}+\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right)$
(b) $0<x<h \quad \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}-\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right)$
(c) $x<0 \quad \underline{E}=-\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}+\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right)$

Example (cont.)

Choose: $\quad \rho_{s 0}^{A}=\rho_{s 0}, \rho_{s 0}^{B}=-\rho_{s 0}$

$$
\begin{aligned}
& x=0 \quad \square x \\
& x=h \quad \rho_{s 0} \\
& \\
& x=\rho_{s 0}
\end{aligned}
$$

(a) $x>h \quad \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}+\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right) \Rightarrow \underline{E}=\underline{0}$
(b) $0<x<h \quad \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}-\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right) \Rightarrow \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{s 0}}{\varepsilon_{0}}\right)$
(c) $x<0$
$\underline{E}=-\underline{\hat{x}}\left(\frac{\rho_{s 0}^{A}}{2 \varepsilon_{0}}+\frac{\rho_{s 0}^{B}}{2 \varepsilon_{0}}\right) \Rightarrow \underline{E}=\underline{0}$

Example (cont.)

Ideal parallel-plate capacitor

Example

Infinite slab of uniform volume charge density

Find the electric field vector everywhere

Example (cont.)

Assume $\left\{\begin{array}{l}\underline{E}=\hat{\hat{x}} E_{x}(x) \\ E_{x}(-x)=-E_{x}(x)\end{array} \quad\right.$ (Exx is an odd function.)

Also $E_{x}(0)=0 \quad$ (symmetry)

Example (cont.)

$$
\underline{E}=\underline{\hat{x}}\left(\frac{\rho_{\mathrm{v} 0} d}{2 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad x \geq(d / 2)
$$

Example (cont.)

Note: If we define $\rho_{s}^{e q}=\rho_{v 0} d$

Note: $\quad \Delta Q=\rho_{v 0} A d=\rho_{s}^{e q} A$

$$
\text { so } \rho_{s}^{e q}=\rho_{v 0} d
$$

Example (cont.)

(b) $0<x<d / 2$

$$
\begin{aligned}
& D_{x}(x) A-D_{\neq}(0) A=Q_{\text {encl }}=\rho_{v 0} A x \\
& \quad \Rightarrow D_{x}=\rho_{v 0} x
\end{aligned}
$$

$$
\underline{E}=\underline{\hat{x}}\left(\frac{\rho_{v 0} x}{\varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad 0 \leq x \leq d / 2
$$

Example (cont.)

Summary

$$
x
$$

 x

 x}

$$
\begin{aligned}
& \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{v 0} d}{2 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad x \geq(d / 2) \\
& \underline{E}=-\hat{\hat{\hat{x}}}\left(\frac{\rho_{v 0} d}{2 \varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad x \leq-(d / 2) \\
& \underline{E}=\underline{\hat{x}}\left(\frac{\rho_{v 0} x}{\varepsilon_{0}}\right) \quad[\mathrm{V} / \mathrm{m}], \quad-d / 2 \leq x \leq d / 2
\end{aligned}
$$

Note:

In the second formula we had to introduce a minus sign, while in the third one we did not.

