ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson
Dept. of ECE

Notes 13
 Divergence

Divergence - The Physical Concept

Find the flux going outward through a sphere of radius r.

$$
\begin{aligned}
\psi & =\int_{S} \underline{D} \cdot \underline{\hat{n}} d S \\
& =\int_{S} \underline{D} \cdot \underline{\hat{r}} d S \\
& =\int_{S} D_{r} d S \\
& =D_{r} 4 \pi r^{2}
\end{aligned}
$$

Spherical region of uniform volume charge density

Divergence - The Physical Concept

From Gauss's law:

$$
\begin{array}{ll}
D_{r}=\frac{\rho_{v 0} r}{3}\left[\mathrm{C}^{2} \mathrm{~m}^{2}\right] & (r<a) \\
D_{r}=\frac{\rho_{v 0} a^{3}}{3 r^{2}}\left[\mathrm{C} / \mathrm{m}^{2}\right] & (r>a)
\end{array}
$$

Also, from last slide: $\psi=D_{r} 4 \pi r^{2}$
Hence

$$
\begin{array}{lll}
\psi=\frac{4}{3} \pi r^{3} \rho_{v 0} & (r<a) & \text { (increasing with distance inside sphere) } \\
\psi=\frac{4}{3} \pi a^{3} \rho_{v 0} & (r>a) & \text { (constant outside sphere) }
\end{array}
$$

Divergence -- Physical Concept (cont.)

Observation:

More flux lines are added as the radius increases (as long as we stay inside the charge).

$$
\Delta \psi=\int_{\Delta S} \underline{D} \cdot \underline{\hat{n}} d S>0
$$

The net flux out of a small volume ΔV inside the charge is not zero.

Divergence is a mathematical way of describing this.

[^0]
Divergence Definition

Definition of divergence:

Divergence at a given point

Note: The limit exists independent of the shape of the volume (proven later).
A region with a positive divergence acts as a "source" of flux lines. A region with a negative divergence acts as a "sink" of flux lines.

Tub of water

$$
\begin{gathered}
\underline{V}(x, y, z)=\text { velocity vector of water inside tub } \\
\nabla \cdot \underline{V}>0(\text { inside tub })
\end{gathered}
$$

Gauss's Law -- Differential Form

Apply divergence definition to a small volume ΔV inside a region of charge:

$$
\operatorname{div} \underline{D} \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \oint_{\Delta S} \underline{D} \cdot \underline{\hat{n}} d S
$$

Gauss's law:

$$
\oint_{\Delta S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{\text {encl }} \approx \rho_{v}(\underline{r}) \Delta V
$$

Hence

$$
\rho_{v}(\underline{r})
$$

$$
\begin{aligned}
\operatorname{div} \underline{D}(\underline{r}) & =\lim _{\Delta v \rightarrow 0} \frac{1}{\Delta \ddot{V}}\left(\rho_{v}(\underline{r}) \Delta \mathscr{V}\right) \\
& =\rho_{v}(\underline{r})
\end{aligned}
$$

Gauss's Law -- Differential Form (cont.)

The electric Gauss law in point (differential) form:

$$
\operatorname{div} \underline{D}(\underline{r})=\rho_{v}(\underline{r})
$$

This is one of Maxwell's equations.

Calculation of Divergence

$$
\begin{aligned}
\operatorname{div} \underline{D} \equiv & \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta x \Delta y \Delta z} \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S \\
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S & \approx D_{x}\left(\frac{\Delta x}{2}, 0,0\right) \Delta y \Delta z \\
& -D_{x}\left(-\frac{\Delta x}{2}, 0,0\right) \Delta y \Delta z \\
& +D_{y}\left(0, \frac{\Delta y}{2}, 0\right) \Delta x \Delta z
\end{aligned}
$$

Assume that the point of interest is at the origin for simplicity (the center of the cube).

The integrals over the 6 faces are approximated by "sampling" at the centers of the faces.

$$
\begin{aligned}
& -D_{y}\left(0,-\frac{\Delta y}{2}, 0\right) \Delta x \Delta z \\
& +D_{z}\left(0,0, \frac{\Delta z}{2}\right) \Delta x \Delta y \\
& -D_{z}\left(0,0,-\frac{\Delta z}{2}\right) \Delta x \Delta y
\end{aligned}
$$

Calculation of Divergence (cont.)

$$
\operatorname{div} \underline{D} \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta x \Delta y \Delta z} \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S
$$

$$
\begin{aligned}
& \oint_{S} \underline{D} \cdot \underline{\hat{n}} d S \approx D_{x}\left(\frac{\Delta x}{2}, 0,0\right) \Delta y \Delta z \\
& \left.\begin{array}{l}
-D_{x}\left(-\frac{\Delta x}{2}, 0,0\right) \Delta y \Delta z \\
+D_{y}\left(0, \frac{\Delta y}{2}, 0\right) \Delta x \Delta z
\end{array}\right) \frac{D_{x}\left(\frac{\Delta x}{2}, 0,0\right)-D_{x}\left(-\frac{\Delta x}{2}, 0,0\right)}{\Delta x} \\
& \left.-D_{y}\left(0,-\frac{\Delta y}{2}, 0\right) \Delta x \Delta z\right) \longrightarrow+\frac{D_{y}\left(0, \frac{\Delta y}{2}, 0\right)-D_{y}\left(0,-\frac{\Delta y}{2}, 0\right)}{\Delta y} \\
& \left.\begin{array}{l}
+D_{z}\left(0,0, \frac{\Delta z}{2}\right) \Delta x \Delta y \\
-D_{z}\left(0,0,-\frac{\Delta z}{2}\right) \Delta x \Delta y
\end{array}\right\} \longrightarrow+\frac{D_{z}\left(0,0, \frac{\Delta z}{2}\right)-D_{z}\left(0,0,-\frac{\Delta z}{2}\right)}{\Delta z}
\end{aligned}
$$

$$
\operatorname{div} \underline{D} \equiv \lim _{\Delta V \rightarrow 0}\left\{\begin{array}{r}
\frac{D_{x}\left(\frac{\Delta x}{2}, 0,0\right)-D_{x}\left(-\frac{\Delta x}{2}, 0,0\right)}{\Delta x} \\
+\frac{D_{y}\left(0, \frac{\Delta y}{2}, 0\right)-D_{y}\left(0,-\frac{\Delta y}{2}, 0\right)}{\Delta y} \\
+\frac{D_{z}\left(0,0, \frac{\Delta z}{2}\right)-D_{z}\left(0,0,-\frac{\Delta z}{2}\right)}{\Delta z}
\end{array}\right.
$$

Hence

$$
\operatorname{div} \underline{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}
$$

Calculation of Divergence (cont.)

Final result in rectangular coordinates:

$$
\operatorname{div} \underline{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}
$$

$$
\nabla \equiv \underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\underline{\hat{z}}} \frac{\partial}{\partial z}
$$

This is a vector operator.

Examples of derivative operators:

Note:

The del operator is only defined in rectangular coordinates.
scalar $\frac{d}{d x}: \quad \frac{d}{d x}(\sin x)=\cos x$
vector $\quad \underline{\hat{x}} \frac{d}{d x}: \quad \underline{\hat{x}} \frac{d}{d x}(\sin x)=\underline{\hat{x}} \cos x$

$$
\begin{aligned}
& \left(\underline{\hat{x}} \frac{d}{d x}\right) \cdot(\underline{\hat{x}} \sin x)=\underline{\hat{x}} \cdot \hat{x} \frac{d}{d x}(\sin x)=\cos x \\
& \left(\underline{\hat{x}} \frac{d}{d x}\right) \times(\underline{\hat{y}} \sin x)=\underline{\hat{x}} \times \underline{\hat{y}} \frac{d}{d x}(\sin x)=\underline{\hat{z}} \cos x
\end{aligned}
$$

Divergence Expressed with del Operator

Now consider:

$$
\begin{aligned}
\nabla \cdot \underline{D}= & =\left(\underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\hat{z}} \frac{\partial}{\partial z}\right) \cdot\left(\underline{\hat{x}} D_{x}+\underline{\hat{y}} D_{y}+\underline{\hat{z}} D_{z}\right) \\
& =\underline{\hat{x}} \cdot \underline{\hat{x}} \frac{\partial D_{x}}{\partial x}+\underline{\hat{y}} \cdot \underline{\hat{y}} \frac{\partial D_{y}}{\partial y}+\underline{\hat{z}} \cdot \underline{\hat{z}} \frac{\partial D_{z}}{\partial z} \\
\text { ce } \quad & \nabla \cdot \underline{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}
\end{aligned}
$$

Hence

This is the same as the divergence.
$\nabla \cdot \underline{D}=\operatorname{div} \underline{D}$

Note that the dot after the del operator is important; any symbol following it tells us how it is to be used and how it is read:

$$
\begin{gathered}
\nabla \Phi=\text { "gradient" } \\
\nabla \cdot \underline{V}=\text { "divergence" } \\
\nabla \times \underline{V}=\text { "curl" }
\end{gathered}
$$

Summary of Divergence Formulas

Rectangular:

$$
\nabla \cdot \underline{D}=\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}
$$

See Appendix A. 2 in the Hayt \& Buck book for a general derivation that holds in any coordinate system.

Cylindrical:

$$
\nabla \cdot \underline{D}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho D_{\rho}\right)+\frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi}+\frac{\partial D_{z}}{\partial z}
$$

Spherical:

$$
\nabla \cdot \underline{D}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} D_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(D_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial D_{\phi}}{\partial \phi}
$$

Note on ∇ Operator

Divergence is defined in any coordinated system, but the ∇ operator is only defined in rectangular coordinates:

$$
\begin{aligned}
& \nabla \equiv \underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\hat{z}} \frac{\partial}{\partial z} \\
& \nabla \neq \underline{\hat{\rho}} \frac{\partial}{\partial \rho}+\underline{\hat{\phi}} \frac{\partial}{\partial \phi}+\underline{\hat{z}} \frac{\partial}{\partial z} \\
& \nabla \neq \underline{\hat{r}} \frac{\partial}{\partial r}+\underline{\hat{\theta}} \frac{\partial}{\partial \theta}+\underline{\hat{\phi}} \frac{\partial}{\partial \phi}
\end{aligned}
$$

For example, in spherical coordinates:

$$
\operatorname{div} \underline{D} \neq\left(\underline{\hat{r}} \frac{\partial}{\partial r}+\underline{\hat{\theta}} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{\partial}{\partial \phi}\right) \cdot\left(\underline{\hat{r}} D_{r}+\underline{\hat{\theta}} D_{\theta}+\hat{\phi} D_{\phi}\right)
$$

Electric Gauss Law (Point or Differential Form)

We now have, in the notation of the "del" operator:

$$
\nabla \cdot \underline{D}=\rho_{v} \quad \text { Electric Gauss law (point form) }
$$

Putting back the coordinate variables in the notation, it looks like:

$$
\nabla \cdot \underline{D}(x, y, z)=\rho_{v}(x, y, z)
$$

Note:

There is only one form of this equation, which has volume charge density. There is no form that has surface charge density or line charge density.

Maxwell's Equations

(Maxwell's equations in point or differential form)

$$
\begin{array}{rlrl}
\nabla \times \underline{E} & =-\frac{\partial \underline{B}}{\partial t} & & \text { Faraday's law } \\
\nabla \times \underline{H}=\underline{J}+\frac{\partial \underline{D}}{\partial t} & & \text { Ampere's law } \\
\nabla \cdot \underline{D} & =\rho_{v} & & \text { Electric Gauss law } \\
\nabla \cdot \underline{B} & =0 & & \text { Magnetic Gauss law }
\end{array}
$$

Divergence appears in two of Maxwell's equations.

Note:
There is no magnetic charge density!
(Magnetic lines of flux must therefore form closed loops.)

Example

Evaluate the divergence of the electric flux vector inside and outside a sphere of uniform volume charge density, and verify that the answer is what is expected from the electric Gauss law.

$$
\begin{aligned}
\nabla \cdot \underline{D} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} D_{r}\right) \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2}\left[\frac{\rho_{\nu 0} r}{3}\right]\right) \\
& =\frac{\rho_{\nu 0}}{3} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{3}\right) \\
& =\frac{1}{r^{2}} \rho_{\nu 0} r^{2}
\end{aligned}
$$

This agrees with the electric Gauss law.

Example (cont.)

$$
\underline{r>a} \quad \underline{D}=\hat{\underline{r}}\left(\frac{\rho_{v 0} a^{3}}{3 r^{2}}\right)
$$

$$
\begin{aligned}
\nabla \cdot \underline{D} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} D_{r}\right) \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2}\left[\frac{\rho_{v 0} a^{3}}{3 r^{2}}\right]\right) \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\frac{\rho_{v 0} a^{3}}{3}\right)=0
\end{aligned}
$$

$$
\nabla \cdot \underline{D}=0
$$

This agrees with the electric Gauss law.

Divergence Theorem

$$
\int_{V} \nabla \cdot \underline{A} d V=\oint_{S} \underline{A} \cdot \underline{\hat{n}} d S
$$

Please see the Appendix for a proof.

$$
\underline{A}=\text { arbitrary vector function }
$$

In words:

The volume integral of "flux per volume" equals the total flux!

Example

Given: $\underline{A}=\underline{\hat{x}}(3 x)$

Verify the divergence theorem using this region.

Note on Divergence Definition

$$
\operatorname{div} \underline{D} \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \oint_{\Delta S} \underline{D} \cdot \underline{\hat{n}} d S
$$

Is this limit independent of the shape of the volume?

Small arbitrary-shaped volume
Use the divergence theorem for RHS:

$$
\oint_{\Delta S} \underline{D} \cdot \underline{\hat{n}} d S=\int_{\Delta V} \nabla \cdot \underline{D} d V
$$

$$
\begin{aligned}
\operatorname{div} \underline{D} & =\lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \int_{\Delta V} \nabla \cdot \underline{D} d V \\
& =\lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V}\left(\left.(\nabla \cdot \underline{D})\right|_{\underline{Y}} \Delta V\right)=\left.\nabla \cdot \underline{D}\right|_{\underline{r}}
\end{aligned}
$$

Hence, the limit is the same regardless of the shape of the limiting volume.

Gauss's Law (Differential to integral form)

We can convert the differential form into the integral form by using the divergence theorem.

$$
\nabla \cdot \underline{D}=\rho_{v}
$$

Integrate both sides over a volume:

$$
\int_{V} \nabla \cdot \underline{D} d V=\int_{V} \rho_{v} d V
$$

Apply the divergence theorem to the LHS:

$$
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=\int_{V} \rho_{v} d V
$$

Use the definition of $Q_{\text {encl }}:\{$

$$
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{e n c l}
$$

Gauss's Law (Summary of two forms)

Note: All of Maxwell's equations have both a point (differential) and an integral form.

Appendix:
 \section*{Proof of Divergence Theorem}

Proof

The volume is divided up into many small cubes.

$$
\int_{V} \nabla \cdot \underline{A} d V=\lim _{\Delta V \rightarrow 0} \sum_{n=1}^{N}(\nabla \cdot \underline{A})_{\underline{r}_{n}} \Delta V
$$

Note: The point \underline{r}_{n} is the center of cube n.

Proof of Divergence Theorem (cont.)

From the definition of divergence:

Proof of Divergence Theorem (cont.)

$$
\int_{V} \nabla \cdot \underline{A} d V=\lim _{\Delta V \rightarrow 0} \sum_{n=1}^{N} \oint_{\Delta S_{n}} \underline{A} \cdot \underline{\hat{n}} d S
$$

Consider two adjacent cubes:

$\underline{A} \cdot \underline{\hat{n}}$ is opposite on the two faces.

Hence, the surface integral cancels on all INTERIOR faces.

Proof of Divergence Theorem (cont.)

But

$$
\lim _{\Delta V \rightarrow 0} \sum_{\substack{\text { outside } \\ \text { faces }}} \int_{\Delta S_{n}} \underline{A} \cdot \underline{\hat{n}} d S=\oint_{S} \underline{A} \cdot \underline{\hat{n}} d S
$$

Hence

$$
\int_{V} \nabla \cdot \underline{A} d V=\oint_{S} \underline{A} \cdot \underline{\hat{n}} d S \quad \text { (proof complete) }
$$

[^0]: Small "curvilinear cube"

