
Prof. David R. Jackson
Dept. of ECE

Spring 2023

Notes 13
Divergence

ECE 3318 
Applied Electricity and Magnetism

1



2

ˆ

ˆ

4

S

S

r
S

r

D n dS

D r dS

D dS

D r

ψ

π

= ⋅

= ⋅

=

=

∫

∫

∫

Divergence – The Physical Concept
Find the flux going outward through a sphere of radius r .
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Spherical region of uniform 
volume charge density
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From Gauss’s law:

3
0

4
3 vrψ π ρ=

20 C/m
3
v

r
rD ρ

 =  

2
3

0
2 C/m

3
v

r
aD

r
ρ  =  

Divergence – The Physical Concept

(r < a)

(r > a)

Hence
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(increasing with distance inside sphere)

(constant outside sphere)
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24rD rψ π=Also, from last slide:



More flux lines are added as the radius increases (as 
long as we stay inside the charge).

Observation: 

Divergence -- Physical Concept (cont.)

ˆ 0
S

D n dSψ
∆

∆ = ⋅ >∫

The net flux out of a small volume ∆V inside the 
charge is not zero. 

Divergence is a mathematical way of describing this. 
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div D D n dS
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∆

≡ ⋅
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Definition of divergence:

Divergence Definition

Note: The limit exists independent of the shape of the volume (proven later).

A region with a positive divergence acts as a “source” of flux lines. 
A region with a negative divergence acts as a “sink” of flux lines. 
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n̂ = outward normalV∆

Divergence at a given point

Small cube



Divergence Definition
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( )0V∇⋅ > inside tub

( ), ,V x y z = velocity vector of water inside tub

Many small pipes injecting water

Tub of water

Water flow
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Apply divergence definition to a small volume ∆V inside a region of charge:

Gauss’s Law -- Differential Form

Gauss's law:

Hence
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Gauss’s Law -- Differential Form (cont.)

( ) ( )vdiv D r rρ=

The electric Gauss law in point (differential) form:

This is one of Maxwell’s equations.
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Calculation of Divergence
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Assume that the point of interest is at the 
origin for simplicity (the center of the cube).

The integrals over the 6 faces are 
approximated by “sampling” at the 

centers of the faces.
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Calculation of Divergence (cont.)
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Calculation of Divergence (cont.)
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Calculation of Divergence (cont.)

yx z
DD D

div D
x y z

∂∂ ∂
= + +

∂ ∂ ∂

Final result in rectangular coordinates:
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The “del” operator

ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

( ): sin cosd d x x
dx dx

=

Examples of derivative operators:

scalar

vector

This is a vector operator.

( )

( ) ( )

( ) ( )

ˆ ˆ ˆ: sin cos

ˆ ˆ ˆ ˆsin sin cos

ˆ ˆ ˆ ˆ ˆsin sin cos

d dx x x x x
dx dx

d dx x x x x x x
dx dx
d dx y x x y x z x
dx dx

=

  ⋅ = ⋅ = 
 
 × = × = 
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Note: 
The del operator is only defined in 

rectangular coordinates.
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∂ ∂ ∂
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∂ ∂ ∂

∇ ≠ + +
∂ ∂ ∂



Divergence Expressed with del Operator
Now consider:

( )ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

x y z

yx z

D x y z x D y D z D
x y z

DD Dx x y y z z
x y z

 ∂ ∂ ∂
∇ ⋅ = + + ⋅ + + ∂ ∂ ∂ 

∂∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂

yx zDD DD
x y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
Hence

This is the same as the divergence.  
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D div D∇ ⋅ =

V
V

Φ =
⋅ =

× =

∇
∇

∇

Note that the dot the del 
operator is important; any 

symbol following it tells 
us how it is to be used 

and how it is read:
 
"gradient"

"divergence"
"curl"

after  
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Divergence with del Operator (cont.)



Summary of Divergence Formulas
Rectangular:

Cylindrical:

Spherical:

yx zDD DD
x y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂

( )1 1 zD DD D
z

φ
ρρ

ρ ρ ρ φ
∂∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

( ) ( )2
2

1 1 1sin
sin sinr

D
D r D D

r r r r
φ

θ θ
θ θ θ φ

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂

See Appendix A.2 in the 
Hayt & Buck book for a 

general derivation that holds 
in any coordinate system.
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Note on ∇ Operator

17

( )ˆ ˆ ˆ ˆˆ ˆ rdiv D r rD D D
r θ φθ φ θ φ
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 ∂ ∂ ∂

≠ + + ⋅ + + ∂ ∂ ∂ 
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∂ ∂ ∂
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∂ ∂ ∂
∂ ∂ ∂

∇ ≠ + +
∂ ∂ ∂

For example, in spherical coordinates:

ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

Divergence is defined in any coordinated system, but the ∇ operator 
is only defined in rectangular coordinates:



Electric Gauss Law
(Point or Differential Form) 
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( ) ( ), , , ,vD x y z x y zρ∇⋅ =

We now have, in the notation of the “del” operator:

vD ρ∇⋅ =

Putting back the coordinate variables in the notation, it looks like:

Note: 
There is only one form of this equation, which has volume charge density. There is no 

form that has surface charge density or line charge density. 

Electric Gauss law (point form)



Maxwell’s Equations

0
v

BE
t
DH J
t

D
B

ρ

∂
∇× = −

∂
∂

∇× = +
∂

∇ ⋅ =

∇ ⋅ =

Faraday’s law

Ampere’s law

Electric Gauss law

Magnetic Gauss law

Divergence appears in two of Maxwell’s equations.
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(Maxwell’s equations in point or differential form)

Note: 
There is no magnetic charge density!

(Magnetic lines of flux must therefore form closed loops.)



Example

r < a

0vD ρ∇⋅ =

This agrees with the electric Gauss law.
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Evaluate the divergence of the electric flux vector inside and outside a 
sphere of uniform volume charge density, and verify that the answer is 

what is expected from the electric Gauss law. 

0ˆ
3
v rD r ρ =  

 

20

x

y

z

r a

0vρ



Example (cont.)

r > a
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0
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3
v aD r
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0D∇⋅ =

This agrees with the electric Gauss law.
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Divergence Theorem

ˆ
V S

A dV A n dS∇⋅ = ⋅∫ ∫

The volume integral of "flux per volume" equals the total flux!

In words:
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A = arbitrary vector function

n̂ = outward normal

n̂
V

S

Please see 
the Appendix 
for a proof.



Example
( )ˆ 3A x x=

Verify the divergence theorem using this region.

n̂

( )3 3

yx zAA AA
x y z

x
x

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
∂

= =
∂

( )3 3 3 1 2 3 18
V V

A dV dV V∇⋅ = = = ⋅ ⋅ =∫ ∫

Given:
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Note:
Only the front and back faces contribute.

A is constant on the front and back faces, and the 
area of these faces is 2 [m2].

so

x

y

z

2
31

Dimensions in meters

( )( )( ) ( ) ( )( )( )ˆ ˆ ˆ ˆ ˆ3 3 2 3 0 2 18
S

A n dS x x x x⋅ = ⋅ + ⋅ − =∫
n̂



Note on Divergence Definition

0

1 ˆlim
V

S

div D D n dS
V∆ →

∆

≡ ⋅
∆ ∫

( )( )
0

0

1lim

1lim

V
V

rrV

div D D dV
V

D V D
V

∆ →
∆

∆ →

= ∇ ⋅
∆

= ∇⋅ ∆ = ∇⋅
∆

∫

Is this limit independent of 
the shape of the volume?

Hence, the limit is the same regardless of the shape of the limiting volume.

ˆ
S V

D n dS D dV
∆ ∆

⋅ = ∇ ⋅∫ ∫

Use the divergence theorem for RHS:
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Small arbitrary-shaped volume
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Gauss’s Law (Differential to integral form)

ˆ encl
S

D n dS Q⋅ =∫

vD ρ∇⋅ =

Apply the divergence theorem to the LHS:
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We can convert the differential form into the integral form by
using the divergence theorem. 

v
V V

D dV dVρ∇ ⋅ =∫ ∫

ˆ v
S V

D n dS dVρ⋅ =∫ ∫

Integrate both sides over a volume:

Use the definition of Qencl :



Gauss’s Law (Summary of two forms)

ˆ encl
S

D n dS Q⋅ =∫

vD ρ∇⋅ =

Divergence theorem

Integral (volume) form of Gauss’s law

Differential (point) form of Gauss’s law

Definition of 
divergence
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Note: All of Maxwell’s equations have both a point (differential) and an integral form.



Appendix:
Proof of Divergence Theorem

Proof

( )
0 1

lim
n

N

rV nV

A dV A V
∆ →

=

∇ ⋅ = ∇ ⋅ ∆∑∫

Note: The point rn is the center of cube n.

The volume is divided 
up into many small 

cubes.
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From the definition of divergence:

( )
0

1 ˆlim

1 ˆ

n

n

n

r V
S

S

A A n dS
V

A n dS
V

∆ →
∆

∆

∇ ⋅ = ⋅
∆

≈ ⋅
∆

∫

∫





Hence:

( )
0 0 01 1 1

1 ˆ ˆlim lim lim
n

n n

N N N

rV V Vn n nV S S

AdV A V A n dS V A n dS
V∆ → ∆ → ∆ →

= = =∆ ∆

 
∇ ⋅ = ∇ ⋅ ∆ = ⋅ ∆ = ⋅  ∆ 

∑ ∑ ∑∫ ∫ ∫ 
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 nS n∆ = surface of cube

rn

Proof of Divergence Theorem (cont.)



Hence, the surface integral cancels on all INTERIOR faces.

0 1

ˆlim
n

N

V nV S

AdV A n dS
∆ →

= ∆

∇ ⋅ = ⋅∑∫ ∫

2n̂ 1n̂
1 2

ˆA n⋅

Consider two adjacent cubes:

is opposite on the two faces.

29

V∆

nr

Proof of Divergence Theorem (cont.)



0

outside
face

1

0
s

ˆlim

ˆlim
n

n

N

V nV S

V
S

A dV A n dS

A n dS

∆ →
= ∆

∆ →
∆

∇ ⋅ = ⋅

= ⋅

∑∫ ∫

∑ ∫



ˆ
V S

AdV A n dS∇⋅ = ⋅∫ ∫

But

outside0
faces

ˆ ˆlim
n

V
S S

A n dS A n dS
∆ →

∆

⋅ = ⋅∑ ∫ ∫

(proof complete)
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Proof of Divergence Theorem (cont.)
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