ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 17
Curl

Curl of a Vector

The curl of a vector function measures the tendency of the vector function to circulate or rotate (or "curl") about an axis.

Note the circulation about the z axis in this stream of water.

The curl of the water velocity vector has a z component.

Curl of a Vector (cont.)

Here the water also has a circulation about the z axis.

This is more obvious if we subtract a constant velocity vector from the water, as seen on the next slide.

Curl of a Vector (cont.)

Curl of a Vector (cont.)

$\underline{V}(x, y, z)=$ vector function
curl $\underline{V}=$ vector function

$$
\begin{aligned}
& \underline{\hat{x}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{x} \rightarrow 0} \frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{V} \cdot \underline{d r} \\
& \underline{\hat{y}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{y} \rightarrow 0} \frac{1}{\Delta S_{y}} \oint_{C_{y}} \underline{V} \cdot \underline{d r}
\end{aligned}
$$

$\underline{\hat{\hat{z}}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{z} \rightarrow 0} \frac{1}{\Delta S_{z}} \oint_{C_{z}} \underline{V} \cdot \underline{d r}$

Note: It turns out that the results are independent of the shape of the paths, but rectangular paths are chosen for simplicity.

The paths are defined according to the "right-hand rule".

The paths are all centered at the point of interest, taken here as the origin for simplicity.
(This is an "exploded view"; a separation between the paths is shown for clarity).

Curl of a Vector (cont.)

"Curl meter"

$$
\underline{\hat{\ell}}=\underline{\hat{x}}, \underline{\hat{y}} \text {, or } \underline{\hat{z}}
$$

Assume that \underline{V} represents the velocity of a fluid.

$$
T_{l}=\text { torquein } l \text { direction }\{\quad(\text { shown for } \underline{\hat{\ell}}=\underline{\hat{z}})
$$

$$
\underline{\ell} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{\ell} \rightarrow 0} \frac{1}{\Delta S_{\ell}} \oint_{C_{\ell}} \underline{V} \cdot \underline{d r}
$$

The term $\underline{V} \cdot \underline{d r}$ measures the force on the paddles.

Hence,
$\underline{\hat{\ell}} \cdot$ curl \underline{V} is a measure of T_{l}, the component of torque in the $\underline{\hat{\ell}}$ direction.
(If this component is positive, the paddle wheel will spin counterclockwise.)

Curl Calculation

The x component of the curl

$$
\left.\begin{array}{rll}
\begin{array}{ll}
\oint_{C_{x}} \underline{V} \cdot \underline{d r}=\oint_{C_{x}} V_{x} d x+V_{y} d y+V_{z} d z & \approx V_{z}\left(0, \frac{\Delta y}{2}, 0\right) \Delta z
\end{array} & \text { (1) } \\
& -V_{z}\left(0,-\frac{\Delta y}{2}, 0\right) \Delta z & \text { (2) }
\end{array}\right\} \quad \text { Pair } \quad \begin{aligned}
\underline{\hat{x}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{x} \rightarrow 0} \frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{V} \cdot \underline{d r} & +V_{y}\left(0,0,-\frac{\Delta z}{2}\right) \Delta y \\
\Delta S_{x}=\Delta y \Delta z & -V_{y}\left(0,0, \frac{\Delta z}{2}\right) \Delta y
\end{aligned}
$$

Each edge is numbered.

Curl Calculation (cont.)

Hence, we have:

$$
\begin{aligned}
\frac{1}{\Delta y \Delta z} \oint_{C_{x}} \underline{V} \cdot \underline{d r} & \approx(\Delta z)\left[\frac{V_{z}\left(0, \frac{\Delta y}{2}, 0\right)-V_{z}\left(0,-\frac{\Delta y}{2}, 0\right)}{\Delta y \Delta z}\right] \\
& -(\Delta y)\left[\frac{V_{y}\left(0,0, \frac{\Delta z}{2}\right)-V_{y}\left(0,0,-\frac{\Delta z}{2}\right)}{\Delta y \Delta z}\right]
\end{aligned}
$$

Recall: $\underline{\hat{\hat{x}}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{x} \rightarrow 0} \frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{V} \cdot \underline{d r}, \quad \Delta S_{x}=\Delta y \Delta z$

Curl Calculation (cont.)

This gives us:

$$
\begin{aligned}
\frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{V} \cdot \underline{d r} & \approx\left[\frac{V_{z}\left(0, \frac{\Delta y}{2}, 0\right)-V_{z}\left(0,-\frac{\Delta y}{2}, 0\right)}{\Delta y}\right] \\
& -\left[\frac{V_{y}\left(0,0, \frac{\Delta z}{2}\right)-V_{y}\left(0,0,-\frac{\Delta z}{2}\right)}{\Delta z}\right] \\
& \approx \frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}
\end{aligned}
$$

Hence,

$$
\underline{\hat{x}} \cdot \operatorname{curl} \underline{V}=\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}
$$

Recall: $\underline{\hat{x}} \cdot \operatorname{curl} \underline{V} \equiv \lim _{\Delta s_{x} \rightarrow 0} \frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{V} \cdot \underline{d r}$

Curl Calculation (cont.)

Similarly,

$$
\begin{aligned}
& \frac{1}{\Delta S_{y}} \oint_{C_{y}} \underline{V} \cdot \underline{d r} \approx \frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x} \quad \Longleftrightarrow \underline{\hat{y}} \cdot \operatorname{curl} \underline{V}=\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \\
& \frac{1}{\Delta S_{z}} \oint_{C_{z}} \underline{V} \cdot \underline{d r} \approx \frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y} \quad \Longleftrightarrow \underline{\hat{z}} \cdot \operatorname{curl} \underline{V}=\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
\end{aligned}
$$

Hence, we have:

$$
\operatorname{curl} \underline{V}=\underline{\hat{x}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)+\underline{\hat{y}}\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right)+\underline{\hat{z}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
$$

Del Operator

Recall: $\quad \nabla \equiv\left(\underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\underline{\hat{z}}} \frac{\partial}{\partial z}\right)$

$$
\begin{aligned}
& \nabla \times \underline{V}=\left(\underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\hat{\imath}} \frac{\partial}{\partial z}\right) \times\left(\underline{\hat{\hat{x}}} V_{x}+\underline{\hat{y}} V_{y}+\underline{\underline{\hat{z}}} V_{z}\right) \\
& =\left|\begin{array}{ccc}
\frac{\hat{x}}{} & \frac{\hat{y}}{} & \underline{\underline{\hat{}}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
V_{x} & V_{y} & V_{z}
\end{array}\right| \\
& =\underline{\underline{\hat{x}}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)-\underline{\hat{y}}\left(\frac{\partial V_{z}}{\partial x}-\frac{\partial V_{x}}{\partial z}\right)+\underline{\hat{\hat{t}}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
\end{aligned}
$$

Del Operator (cont.)

Hence, in rectangular coordinates, we have

$$
\operatorname{curl} \underline{V}=\nabla \times \underline{V}
$$

Summary of Curl Formulas

Rectangular

$$
\nabla \times \underline{V}=\underline{\hat{x}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)+\underline{\hat{y}}\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right)+\underline{\hat{z}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
$$

Cylindrical

$$
\nabla \times \underline{V}=\underline{\hat{\rho}}\left(\frac{1}{\rho} \frac{\partial V_{z}}{\partial \phi}-\frac{\partial V_{\phi}}{\partial z}\right)+\underline{\hat{\phi}}\left(\frac{\partial V_{\rho}}{\partial z}-\frac{\partial V_{z}}{\partial \rho}\right)+\underline{\hat{z}} \frac{1}{\rho}\left(\frac{\partial\left(\rho V_{\phi}\right)}{\partial \rho}-\frac{\partial V_{\rho}}{\partial \phi}\right)
$$

Spherical

$$
\nabla \times \underline{V}=\underline{\hat{r}} \frac{1}{r \sin \theta}\left[\frac{\partial\left(V_{\phi} \sin \theta\right)}{\partial \theta}-\frac{\partial V_{\theta}}{\partial \phi}\right]+\underline{\underline{\theta}} \frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial V_{r}}{\partial \phi}-\frac{\partial\left(r V_{\phi}\right)}{\partial r}\right]+\underline{\phi} \frac{1}{r}\left[\frac{\partial\left(r V_{\theta}\right)}{\partial r}-\frac{\partial V_{r}}{\partial \theta}\right]
$$

Determinant Forms
Rectangular $\quad \nabla \times \underline{A}=\left|\begin{array}{ccc}\underline{\hat{x}} & \frac{\hat{y}}{\partial} & \underline{\hat{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|$
Cylindrical $\quad \nabla \times \underline{A}=\frac{1}{\rho}\left|\begin{array}{ccc}\frac{\hat{\rho}}{\partial} & \rho \underline{\hat{\phi}} & \underline{\hat{z}} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{\rho} & \rho A_{\phi} & A_{z}\end{array}\right|$
Spherical $\nabla \times \underline{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}\frac{\hat{r}}{} & r \underline{\hat{\theta}} & r \sin \theta \underline{\hat{\phi}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_{r} & r A_{\theta} & r \sin \theta A_{\phi}\end{array}\right|$

Note on ∇ Operator

Curl can be calculated in any coordinated system, but the ∇ operator is only defined in rectangular coordinates:

$$
\begin{aligned}
& \nabla \equiv \underline{\hat{x}} \frac{\partial}{\partial x}+\underline{\hat{y}} \frac{\partial}{\partial y}+\underline{\hat{z}} \frac{\partial}{\partial z} \\
& \nabla \neq \underline{\hat{\rho}} \frac{\partial}{\partial \rho}+\underline{\hat{\phi}} \frac{\partial}{\partial \phi}+\underline{\hat{z}} \frac{\partial}{\partial z} \\
& \nabla \neq \underline{\hat{r}} \frac{\partial}{\partial r}+\underline{\hat{\theta}} \frac{\partial}{\partial \theta}+\underline{\hat{\phi}} \frac{\partial}{\partial \phi}
\end{aligned}
$$

For example, in spherical coordinates:

$$
\operatorname{curl} \underline{V} \neq\left(\underline{\hat{r}} \frac{\partial}{\partial r}+\underline{\hat{\theta}} \frac{\partial}{\partial \theta}+\hat{\phi} \frac{\partial}{\partial \phi}\right) \times\left(\underline{\underline{r}} V_{r}+\underline{\hat{\theta}} V_{\theta}+\hat{\phi} V_{\phi}\right)
$$

Example

Calculate the curl of the following vector function:

$$
\underline{V}=\underline{\hat{x}}\left(3 x y^{2} z\right)+\underline{\hat{y}}\left(2 x^{2}-z^{3}\right)+\underline{\hat{z}}(2 x z)
$$

$$
\begin{aligned}
& \nabla \times \underline{V}=\underline{\hat{x}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)+\underline{\hat{y}}\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right)+\underline{\hat{z}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \\
& \nabla \times \underline{V}=\underline{\hat{x}}\left(0+3 z^{2}\right)+\underline{\hat{y}}\left(3 x y^{2}-2 z\right)+\underline{\hat{z}}(4 x-6 x y z)
\end{aligned}
$$

Example

Calculate the curl: $\underline{V}=\underline{\hat{x}}(y) \quad V_{x}=y, V_{y}=0, V_{z}=0$

$$
\nabla \times \underline{V}=\underline{\hat{x}}\left(\frac{\partial V_{z}^{\prime}}{\partial y}-\frac{\partial W_{y}}{\partial z}\right)+\underline{\hat{y}}\left(\frac{\partial V / x}{\partial z}-\frac{\partial W_{z}}{\partial x}\right)+\underline{\hat{\hat{x}}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
$$

$$
\text { Hence, } \quad \nabla \times \underline{V}=\underline{\hat{\imath}}(-1)
$$

Example (cont.)

$$
\nabla \times \underline{V}=\underline{\hat{\imath}}(-1)
$$

Note:

The paddle wheel will not spin if the axis is pointed in the x or y directions (the x and y components of the curl are zero).

Point your thumb in the z direction:
The paddle wheel spins opposite to the fingers of the right hand.

Arbitrary Component of Curl Vector

Consider taking a component of the curl vector in an arbitrary direction.

We have the following property:
$\underline{\hat{1}}$ (arbitrary direction)

$$
(\nabla \times \underline{V}) \cdot \underline{\underline{I}}=\lim _{\Delta S \rightarrow 0} \frac{1}{\Delta S} \oint_{C} \underline{V} \cdot \underline{d r} \propto T_{l}
$$

Note:

This property is obviously true for the x, y, and z directions, due to the definition of the curl vector. This theorem now says that the property is true for any direction in space.

Component of Curl Vector (cont.)

Physical interpretation of curl component (water flow)

The curl vector points in the direction of the "whirlpool" effect.

* If we call the axis of the whirlpool the z direction, then the curl of the velocity vector \underline{V} has a z component but no x or y components (visual a paddle wheel in the water being aligned in the x or y directions in the figure below).

Summary of Curl Properties

* The x, y, z components of the curl vector are defined by the circulation (per area) about the corresponding axis. This translates into torque on the paddle wheel when pointed in these directions.
* The component of the curl vector in an arbitrary direction gives the circulation (per area) about the corresponding axis. This translates into torque on the paddle wheel when pointed in this direction.
* Physically, the curl vector points in the direction of the "whirlpool" of the vector function.

Illustration of Curl Properties

Example: $\quad \underline{V}=\underline{\hat{x}}(y)$

From calculations: $\quad \nabla \times \underline{V}=\underline{\hat{z}}(-1)$

Hence:

> The paddle wheel spins the fastest when the axis is along the z axis.
> The z axis is the axis of the "whirlpool" in the water.

Vector Identity

$$
\nabla \cdot(\nabla \times \underline{V})=0
$$

Proof:

$$
\begin{aligned}
\nabla \times \underline{V} & =\underline{\hat{x}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)-\underline{\hat{y}}\left(\frac{\partial V_{z}}{\partial x}-\frac{\partial V_{x}}{\partial z}\right)+\underline{\hat{z}}\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \\
\nabla \cdot \underbrace{(\nabla \times \underline{V})}_{\underline{A}}) & =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
& =\left(\frac{\partial^{2} V_{z}}{\partial x \partial y}-\frac{\partial^{2} V_{y}}{\partial x \partial z}\right)-\left(\frac{\partial^{2} V_{z}}{\partial y \partial x}-\frac{\partial^{2} V_{x}}{\partial y} \frac{\partial z}{\partial z}\right)+\left(\frac{\partial^{2} V_{y}}{\partial z \partial x}-\frac{\partial^{2} V_{x}}{\partial z} \frac{\partial y}{\partial y}\right) \\
& =0
\end{aligned}
$$

Stokes's Theorem

C (closed)

The unit normal is chosen from a "right-hand rule" according to the direction along C.
(An outward normal corresponds to a counter clockwise path.)

$$
\int_{S}(\nabla \times \underline{V}) \cdot \underline{\hat{n}} d S=\oint_{C} \underline{V} \cdot \underline{d r} \quad \text { (A proof is in Appendix A.) }
$$

"The surface integral of circulation per unit area equals the total circulation."

Appendix A: Proof of Stokes's Theorem

Divide S into rectangular patches that are normal to x, y, or z axes (all with the same area ΔS for simplicity).

Proof (cont.)

$$
\int_{S}(\nabla \times \underline{V}) \cdot \underline{\hat{n}} d S \approx \sum_{n}(\nabla \times \underline{V})_{r_{i}} \cdot \underline{\hat{n}}_{i} \Delta S
$$

Curl definition:

$$
\begin{aligned}
\underline{\hat{n}}_{i} \cdot(\nabla \times \underline{V})_{\underline{r}_{i}}= & \lim _{\Delta s \rightarrow 0} \frac{1}{\Delta S} \oint_{C_{i}} \underline{V} \cdot \underline{d r} \quad \text { Substitute } \\
\approx & \frac{1}{\Delta S} \oint_{C_{i}} \underline{V} \cdot \underline{d r} \quad \Longleftrightarrow(\nabla \times \underline{V})_{r_{i}} \cdot \hat{n}_{i} \Delta S \approx \oint_{C_{i}} \underline{V} \cdot \underline{d r} \\
& \text { so } \int_{S}(\nabla \times \underline{V}) \cdot \underline{\hat{n}} d s \approx \sum_{n} \oint_{C_{i}} \underline{V} \cdot \underline{d r}
\end{aligned}
$$

Proof (cont.)

$$
\begin{aligned}
\int_{s}(\nabla \times \underline{V}) \cdot \underline{\hat{r}} d s & \approx \sum_{n} \oint_{C_{i}} \underline{V} \cdot \underline{d r} \\
& =\sum_{\substack{\text { exenoior } \\
\text { exes } \\
\text { ecos }}} \underline{V} \cdot \underline{d r} \\
& \rightarrow \oint_{C} \underline{V} \cdot \underline{d r}
\end{aligned}
$$

Cancelation

Interior edges cancel, leaving only exterior edges.

Proof complete

Appendix B: Component of Curl Vector

$$
\underline{\hat{n}}=\underline{\underline{l}}(\text { constant })
$$

Proof:

Stokes' Theorem: $\int_{\Delta S}(\nabla \times \underline{V}) \cdot \underline{\hat{n}} d s=\oint_{C} \underline{V} \cdot \underline{d r}$

For the LHS: $\int_{\Delta S}(\nabla \times \underline{V}) \cdot \underline{\hat{n}} d s=\int_{\Delta S}(\nabla \times \underline{V}) \cdot \underline{\hat{l}} d s \approx(\nabla \times \underline{V}) \cdot \underline{\hat{l}} \Delta S$ Hence, $(\nabla \times \underline{V}) \cdot \underline{\hat{l}} \Delta S \approx \oint_{C} \underline{V} \cdot \underline{d r}$

Taking the limit: $(\nabla \times \underline{V}) \cdot \underline{\underline{l}}=\lim _{\Delta S \rightarrow 0} \frac{1}{\Delta S} \oint_{C} \underline{V} \cdot \underline{d r}$

