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Curl of a Vector 
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The curl of a vector function measures the tendency of the 
vector function to circulate or rotate (or “curl”) about an axis. 

Note the circulation about the z axis in this stream of water. 

The curl of the water velocity vector has a z component. 
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Curl of a Vector (cont.) 

Here the water also has a circulation about the z axis.  

This is more obvious if we subtract a constant velocity vector from the water,  
as seen on the next slide. 
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Curl of a Vector (cont.) 
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yy

zz

Cs
x
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y
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z

x curl V V dr
S

y curl V V dr
S

z curl V V dr
S

∆ →

∆ →

∆ →

⋅ ≡ ⋅
∆

⋅ ≡ ⋅
∆

⋅ ≡ ⋅
∆

∫

∫

∫







( ), ,V x y z = vector function

curl V = vector function

The paths are defined according to 
the “right-hand rule”. 
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The paths are all centered at the point of interest, taken here as the origin for simplicity. 
(This is an “exploded view”; a separation between the paths is shown for clarity).  

Note: It turns out that the results are 
independent of the shape of the paths, but 
rectangular paths are chosen for simplicity. 

Curl of a Vector (cont.) 

Curl is calculated here 
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Curl of a Vector (cont.) 

“Curl meter” ˆ ˆ ˆ, ,x y z= or

lTcurl V⋅ 

 is a measure of thecomponent of torque in the direction., 

Assume that V  represents 
the velocity of a fluid. 

0

1ˆ lim
Cs

curl V V dr
S∆ →

⋅ ≡ ⋅
∆ ∫











The term V • dr measures the force on the paddles. 

Hence, 
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(If this component is positive, the paddle wheel will spin counterclockwise.) 

( )ẑ=shown for

C


V

l lT = torque in  direction

S∆




Curl Calculation 

Path Cx : 

0, , 0
2

0, , 0
2

0, 0,
2

0, 0,
2

x x
x y z zC C

z

y

y

yV dr V dx V dy V dz V z

yV z

zV y

zV y

∆ ⋅ = + + ≈ ∆ 
 

∆ − − ∆ 
 

∆ + − ∆ 
 

∆ − ∆ 
 

∫ ∫ 

(1) 

Each edge is numbered. 

Pair 

Pair 
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The x component of the curl 
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xC

z∆

y∆

1
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0

1ˆ lim
xx Cs

x

x curl V V dr
S∆ →

⋅ ≡ ⋅
∆ ∫

xS y z∆ = ∆ ∆

(2) 

(3) 

(4) 



Curl Calculation (cont.) 
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( )

( )

0, , 0 0, , 0
1 2 2

0, 0, 0, 0,
2 2

x

z z

C

y y

y yV V
V dr z

y z y z

z zV V
y

y z

∆ ∆    − −       ⋅ ≈ ∆  
∆ ∆ ∆ ∆ 

  
∆ ∆    − −       − ∆  

∆ ∆ 
  

∫

Hence, we have: 

0

1ˆ lim ,
xx

xCs
x

x curl V V dr S y z
S∆ →

⋅ ≡ ⋅ ∆ = ∆ ∆
∆ ∫Recall :



0, , 0 0, , 0
1 2 2

0, 0, 0, 0,
2 2

x

z z

C
x

y y

yz

y yV V
V dr

S y

z zV V

z

VV
y z

∆ ∆    − −       ⋅ ≈  
∆ ∆ 

  
∆ ∆    − −       −  

∆ 
  

∂∂
≈ −
∂ ∂

∫

Curl Calculation (cont.) 
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This gives us: 

ˆ yz VVx curl V
y z

∂∂
⋅ = −

∂ ∂

Hence, 

0

1ˆ lim
xx Cs

x

x curl V V dr
S∆ →

⋅ ≡ ⋅
∆ ∫Recall :



Similarly, 

1

1
y

z

x z

y C

y x

z C

V VV dr
S z x

V VV dr
S x y

∂ ∂
⋅ ≈ −

∆ ∂ ∂

∂ ∂
⋅ ≈ −

∆ ∂ ∂

∫

∫





ˆ ˆ ˆy yx xz z
V VV VV Vcurl V x y z

y z z x x y
∂ ∂   ∂ ∂∂ ∂ = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

Hence, we have: 

ˆ x zV Vy curl V
z x

∂ ∂ ⋅ = − ∂ ∂ 

ˆ y xV Vz curl V
x y

∂ ∂
⋅ = − ∂ ∂ 

Curl Calculation (cont.) 
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See Appendix A.2 in the Hayt & Buck book for a 
 general derivation of curl that holds in any coordinate system. 



Del Operator 

( )ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

y yx xz z

V x y z xV yV zV
x y z

x y z

x y z
V V V

V VV VV Vx y z
y z x z x y

 ∂ ∂ ∂
∇× = + + × + + ∂ ∂ ∂ 

∂ ∂ ∂
=
∂ ∂ ∂

∂ ∂   ∂ ∂∂ ∂ = − − − + −    ∂ ∂ ∂ ∂ ∂ ∂    

ˆ ˆ ˆx y z
x y z

 ∂ ∂ ∂
∇ ≡ + + ∂ ∂ ∂ 

Recall: 
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Del Operator (cont.) 

curl V V= ∇×

Hence, in rectangular coordinates, we have 

12 



Summary of Curl Formulas 

( )1 1ˆˆ ˆz z
VV V VV VV z

z z
φφ ρ ρρ

ρ φ
ρ φ ρ ρ ρ φ

 ∂∂ ∂ ∂   ∂ ∂  ∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

( )


( ) ( )sin1 1 1 1ˆˆ
sin sin

r r
V rV rVV V VV r

r r r r r
φ φ θθ

θ
θ φ

θ θ φ θ φ θ

   ∂ ∂ ∂ ∂ ∂ ∂
∇× = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂        

ˆ ˆ ˆy yx xz z
V VV VV VV x y z

y z z x x y
∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

Rectangular 

Cylindrical 

Spherical 
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Summary of Curl Formulas (cont.) 

Rectangular 

Cylindrical 

Spherical 

ˆ ˆ ˆ

x y z

x y z

A
x y z

A A A

∂ ∂ ∂
∇× =

∂ ∂ ∂

2

ˆ ˆˆ sin
1
sin

sinr

r r r

A
r r

A rA r Aθ φ

θ θ φ

θ θ φ
θ

∂ ∂ ∂
∇× =

∂ ∂ ∂

ˆˆ ˆ
1

z

z

A
z

A A Aρ φ

ρ ρ φ

ρ ρ φ
ρ

∂ ∂ ∂
∇× =

∂ ∂ ∂

Determinant Forms 



Note on ∇ Operator 
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( )ˆ ˆ ˆ ˆˆ ˆ rcurl V r rV V V
r θ φθ φ θ φ

θ φ
 ∂ ∂ ∂

≠ + + × + + ∂ ∂ ∂ 

For example, in spherical coordinates: 

ˆˆ ˆ

ˆ ˆˆ

z
z

r
r

ρ φ
ρ φ

θ φ
θ φ

∂ ∂ ∂
∇ ≠ + +

∂ ∂ ∂
∂ ∂ ∂

∇ ≠ + +
∂ ∂ ∂

ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

Curl can be calculated in any coordinated system, but the ∇ operator 
is only defined in rectangular coordinates: 



Example 

( ) ( ) ( )2 2 3ˆ ˆ ˆ3 2 2V x xy z y x z z xz= + − +

( ) ( ) ( )2 2ˆ ˆ ˆ0 3 3 2 4 6V x z y xy z z x xyz∇× = + + − + −

ˆ ˆ ˆy yx xz z
V VV VV VV x y z

y z z x x y
∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

Calculate the curl of the following vector function: 
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Example 

ˆ ˆ ˆy yx xz z
V VV VV VV x y z

y z z x x y
∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

Calculate the curl: ( )ˆV x y=

Velocity of water flowing in a river 

( )ˆ 1V z∇× = −
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, 0, 0x y zV y V V= = =

Hence, 

x

y



Example (cont.) 

( )ˆ 1V z∇× = −

( ) ˆ 1 0V z∇× ⋅ = − <Hence 

18 

Note:  
The paddle wheel will not spin if the axis is 

pointed in the x or y directions 
 (the x and y components of the curl are zero). 

Point your thumb in the z direction:  
The paddle wheel spins opposite to the fingers of the right hand. 

x

y



Arbitrary Component of Curl Vector  

( )
0

1ˆ lim lS
C

V l V dr T
S∆ →

∇× ⋅ = ⋅ ∝
∆ ∫
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Note:  
This property is obviously true for the x, y, and z directions, due to the definition of the curl 

vector. This theorem now says that the property is true for any direction in space.  

Consider taking a component of the curl vector in an arbitrary direction. 

We have the following property: 

(The proof is in Appendix B.) 

l̂ (arbitrary direction)

C

ˆS l∆ (perpendicular to )

lT
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Component of Curl Vector (cont.) 
Physical interpretation of curl component (water flow) 

The curl vector points 
in the direction of the 

“whirlpool” effect. 

V∇×

 If we call the axis of the whirlpool 
the z direction, then the curl of 
the velocity vector V has a z 
component but no x or y 
components (visual a paddle 
wheel in the water being aligned 
in the x or y directions in the 
figure below). 

x

y 2-D water flow with no z variation 
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Summary of Curl Properties 
 The x, y, z components of the curl vector are defined by the circulation (per 

area) about the corresponding axis. This translates into torque on the 
paddle wheel when pointed in these directions.  

 The component of the curl vector in an arbitrary direction gives the 
circulation (per area) about the corresponding axis. This translates into 
torque on the paddle wheel when pointed in this direction.  

 Physically, the curl vector points in the direction of the “whirlpool” of the 
vector function. 



Illustration of Curl Properties 
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x 

y 

( )ˆV x y=

( )ˆ 1V z∇× = −

Example: 

From calculations:  

Hence: 
 The paddle wheel spins the fastest when the axis is along the z axis. 
 The z axis is the axis of the “whirlpool” in the water.  



( )

2 22 22 2

0

yx z

A

y yx xz z

AA AV
x y z

V VV VV V
x y x z y x y z z x z y

∂∂ ∂
∇ ⋅ ∇× = + +

∂ ∂ ∂

   ∂ ∂ ∂ ∂∂ ∂
= − − − + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
=



Vector Identity 

Proof: 

( ) 0V∇⋅ ∇× =

ˆ ˆ ˆy yx xz z
V VV VV VV x y z

y z x z x y
∂ ∂   ∂ ∂∂ ∂ ∇× = − − − + −    ∂ ∂ ∂ ∂ ∂ ∂    
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Stokes’s Theorem 

The unit normal is chosen from a “right-hand rule” 
 according to the direction along C. 

(An outward normal corresponds to a counter clockwise path.) 

( ) ˆ
S C

V n dS V dr∇× ⋅ = ⋅∫ ∫

“The surface integral of circulation per unit area equals the total circulation.” 
24 

C (closed) 

S (open) 

n̂

(A proof is in Appendix A.) 



Appendix A: Proof of Stokes’s Theorem 
Divide S into rectangular patches that are normal to x, y, or z axes 

 (all with the same area ∆S for simplicity). 

( ) ( )ˆ ˆ
i ir

nS

V n dS V n S∇× ⋅ ≈ ∇× ⋅ ∆∑∫
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ˆ ˆ ˆ ˆ, ,in x y z= or

n̂
S∆

ˆ in

S

C

ir



Proof (cont.) 

( ) ˆ
i

i

ir
C

V n S V dr∇× ⋅ ∆ ≈ ⋅∫

( )
0

1ˆ lim

1
i i

i

i r Cs

C

n V V dr
S

V dr
S

∆ →
⋅ ∇× = ⋅

∆

≈ ⋅
∆

∫

∫
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( ) ( )ˆ ˆ
i ir

nS

V n dS V n S∇× ⋅ ≈ ∇× ⋅ ∆∑∫

Substitute 

( ) ˆ
i

nS C

V n ds V dr∇× ⋅ ≈ ⋅∑∫ ∫so 

ˆ ˆ ˆ ˆ, ,in x y z= or

ˆ in ir
iC

S

C

Curl definition: 



Proof (cont.) 

( ) ˆ
i

i

nS C

C

C

V n ds V dr

V dr

V dr

∆

∇× ⋅ ≈ ⋅

= ⋅

→ ⋅

∑∫ ∫

∑ ∫

∫





exterior
edges

Interior edges cancel, 
 leaving only exterior edges. 

Proof complete 
27 

ˆ in ir
iC

S

C

Cancelation 

iC∆ C



For the LHS: 

Hence, 

( ) ˆ
S C

V n ds V dr
∆

∇× ⋅ = ⋅∫ ∫Stokes’ Theorem: 

Proof: 

Taking the limit: ( )
0

1ˆ lim
S

C

V l V dr
S∆ →

∇× ⋅ = ⋅
∆ ∫

( ) ˆ
C

V l S V dr∇× ⋅ ∆ ≈ ⋅∫

( ) ( ) ( )ˆ ˆˆ
S S

V n ds V l ds V l S
∆ ∆

∇× ⋅ = ∇× ⋅ ≈ ∇× ⋅ ∆∫ ∫
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Appendix B: Component of Curl Vector 
ˆn̂ l= (constant)

C

S∆ ( planar)
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