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Example (cont.)
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Find curl of E from a static point charge

x

y

z

q



Example (cont.)

This gives us Faraday’s law:

0E∇× =
(in statics)
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Note:
If the curl of the electric field is zero for the field from a static point charge, then 

by superposition it must be zero for the field from any static charge density.



( ) ˆ 0
C S

E d r E n dS⋅ = ∇× ⋅ =∫ ∫

Here S is any “bowl” surface 
that is attached to C.

Stokes's theorem:
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Faraday’s Law in Statics 
(Integral Form)

0
C

E dr⋅ =∫Hence

n̂C



Faraday’s Law in Statics 
(Differential Form)

( ) C0
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∫

∫
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



0E∇× =Hence

We then have (definition of curl):

We show here how the integral form also implies the differential form.
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Assume

x

y

z

Cx

Cy

Cz

∆Sz

∆Sx

∆Sy
Curl is calculated here



Faraday’s Law in Statics (Summary)

0E∇× =

0
C

E dr⋅ =∫ Integral form of Faraday’s law

Differential (point) form of Faraday’s law

Stokes’s theorem Definition of curl

6



Path Independence and Faraday’s Law
The integral form of Faraday’s law is equivalent to

path independence of the voltage drop calculation in statics.
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Proof:

1 2C C C

E d r E d r E d r⋅ = ⋅ − ⋅∫ ∫ ∫

1 2

0
C C C

E d r E d r E d r⋅ = ⇔ ⋅ = ⋅∫ ∫ ∫

Hence, 

0
C

E d r⋅ =∫ (in statics)

Also, 

2C

1C

C

A
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Summary of Path Independence

Equivalent

0
C

E dr⋅ =∫ 0E∇× =

ABVPath independence for 

Equivalent properties of an electrostatic field 
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Summary of Electrostatics

vD ρ∇ ⋅ =

9

Here is a summary of the important equations
related to the electric field in statics. 

0D Eε=

Electric Gauss law

Faraday’s law

Constitutive equation (free space)

0E∇× =



Faraday’s Law: Dynamics

Experimental Law (dynamics):

BE
t

∂
∇× = −

∂
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This is the general Faraday’s law in dynamics.
Michael Faraday*

*Ernest Rutherford stated: "When we consider the magnitude and extent of his discoveries
and their influence on the progress of science and of industry, there is no honour too great
to pay to the memory of Faraday, one of the greatest scientific discoverers of all time".

(from Wikipedia)

2Webers/mB  =  magnetic flux density



Magnetic field Bz (increasing with time)

Electric field E

Faraday’s Law: Dynamics (cont.)
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The changing magnetic field produces an electric field.

Experiment

x

y

Assume a Bz field that increases with time:
( )ˆ

0

z

z

B zB t
dB
dt

=

>

( )ˆ 0zBz E
t

∂
⋅ ∇× = − <

∂



Faraday’s Law: Dynamics (cont.)
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A changing magnetic field produces a circulating electric field.

Magnetic field Bz (increasing with time)

Electric field E

Note:
The circulation of the electric field 

about the z axis is opposite to the right 
hand, due to the minus sign in 

Faraday’s law.

( )ˆ 0z E⋅ ∇× <



Eddy Currents
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Eddy currents are currents that flow inside a transformer core 
(or other conducting object) due to a changing magnetic field.

Eddy current

Eddy current cause power loss.



Magnetic field Bz (increasing with time)

Electric field E

( )ˆ 0zBz E
t

∂
⋅ ∇× = − <

∂

Eddy Currents (cont.)
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Transformer core

x

y

( )1 z
E E B

t
φ ρρ

ρ ρ φ

 ∂ ∂ ∂ − = −
 ∂ ∂ ∂ 

Assume no φ variation

Cylindrical coordinates

Assume no φ variation.



Eddy Currents (cont.)
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Transformer core

( )1 z
E B

t
φρ

ρ ρ

 ∂ ∂
= −  ∂ ∂ 

x

y

Eφ
1 zE BE

t
φ

φρ ρ
∂ ∂

+ = −
∂ ∂

1p
p p

z

E
E j Bφ
φ ω

ρ ρ
∂

+ = −
∂

( )pE A α
φ ρ ρ=

1 1 p
zA A j Bα ααρ ρ ω− −+ = −

( )1 1 p
zA j Bαρ α ω− + = −

1,
2

p
z

jA Bωα = = −

Assume:

Solution:

(phasor domain)

( ) ( ) ( )
( )

0

0

cosz z

p j
z z

B t B t

B B e φ

ω φ= +

=

time domain

phasor domain

Assume no ρ variation of Bz.

(no ρ variation)



Eddy Currents (cont.)

16

Transformer core

x

y

Eφ
( )

2

p
p zj BEφ

ωρ ρ
 

= − 
 

( )
2

p
p zj BJφ

ωσρ ρ
 

= − 
 

Hence we have:

J Eσ=

Also, we have Ohm’s law:

Eddy currents*

( ) ( ) ( )
( )

0

0

cosz z

p j
z z

B t B t

B B e φ

ω φ= +

=

time domain

phasor domain

Note that the eddy currents increase with frequency!

*The currents look like eddies or whirlpools in water.



Eddy Currents (cont.)
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Laminated cores are used to reduce eddy currents.

Solid core

Laminated coreThe laminated core consists of layers of iron 
material coated with electrical insulation.

Jφ



Faraday’s Law: Integral Form
BE
t

∂
∇× = −

∂

Apply Stokes’s theorem for the LHS:

ˆ
C S

BE d r n dS
t

∂ ⋅ = − ⋅ ∂ ∫ ∫
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( ) ˆ ˆ
S S

BE n dS n dS
t

∂ ∇× ⋅ = − ⋅ ∂ ∫ ∫

Integrate both sides over an arbitrary open surface (bowl) S:

Faraday's law in integral form 

Note: 
The right-hand rule 

determines the direction of 
the unit normal, from the 

direction along C.

C (closed)

S (open)
n̂



Faraday’s Law: Integral Form (cont.)

Assume that the surface and the path are not changing with time:

ˆ
C S

BE d r n dS
t

∂ ⋅ = − ⋅ ∂ ∫ ∫
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ˆ
C S

dE d r B n dS
dt

⋅ = − ⋅∫ ∫

ˆ
S

B n dSψ ≡ ⋅∫

C

dE d r
dt
ψ

⋅ = −∫

Define magnetic flux through the surface S:

We then have
Note: 

The right-hand rule determines the 
direction of the unit normal in the flux 

calculation, from the direction along C.
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ˆ
S

B n dSψ ≡ ⋅∫

C

dE d r
dt
ψ

⋅ = −∫

where

Summary

The voltage drop around a closed path is equal to the rate 
of change of magnetic flux through the path.

Faraday’s Law: Summary

C (closed)

S (open)
n̂

Note: The closed path can be anything: in free space, inside of a metal wire, etc.

Stationary surface



Eddy Currents (Revisited)
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( )2
z

C

d dE dr B
dt dt
ψ πρ⋅ = − = −∫

2p p
z

C

E dr j Bωπρ⋅ = −∫
( ) 22p p

zE j Bφ πρ ωπρ= − 2
p p

zJ j Bφ
σωρ = −  
 

J Eφ φσ=

( ) ( ) ( )
( )

0

0

cosz z

p j
z z

B t B t

B B e φ

ω φ= +

=

time domain

phasor domain

This is the same result we 
obtained before, using the 

differential form of 
Faraday's law.

Integral form of Faraday's law:

Solid core

C
ρ x

y

r

J Eσ=



Faraday’s Law for a Loop

Magnetic field B (Bz is changing with time)

We measure a voltage across a loop due to 
a changing magnetic field inside the loop.
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+
-

Open-circuited loop

x

y ( )v t

(This is the basis for how AC generators and transformers work.)



Note:
The voltage drop along the 

PEC wire (from B to A inside 
the wire) is zero.

C

dE d r
dt
ψ

⋅ = −∫

B

AB
A C

v v E dr E dr= = ⋅ = ⋅∫ ∫

dv
dt
ψ

= −

So we have

Also
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( )z z
S

B dSψ ψ= − = −∫

ˆ ˆ( )n z= −

+
-

x

y

C

S

A

B

( )v t

Faraday’s Law for a Loop (cont.)

Note: A lower case v denotes that it is time-varying.

B

A C

E dr E dr⋅ = ⋅∫ ∫



( ) zdv t
dt
ψ

=

24

z z
S

B dSψ ≡ ∫

+
-

x

y
( )v t

Faraday’s Law for a Loop (cont.)

Hence:



A = area of loop

Assume 

Assume a uniform magnetic field for simplicity.

( ) zdBv t A
dt

=

25

so

z zB Aψ = +
-

x

y
( )v t

Faraday’s Law for a Loop (cont.)

(At least it is uniform over the loop area.)

Then we have:



Assume ( ) zdv t
dt
ψ

=

26

General form

ψz = magnetic flux through loop in z direction

( ) zdBv t A
dt

= Uniform field

Summary

z z
S

B dSψ ≡ ∫

+
-

x

y
( )v t

A = area of loop

Faraday’s Law for a Loop (cont.)



Lenz’s Law

Assume 

( ) 0zdBv t A
dt

= >
27

This is a simple rule to tell us the polarity of the output voltage
(without having to do any calculation).

The output voltage polarity corresponds 
to a current flow that opposes the 

change in the flux in the loop.

Note:
A right-hand rule tells us the direction of the magnetic field 

due to a wire carrying a current. 
(A wire carrying a current in the z direction produces a 

magnetic field in the positive φ direction.)

Bz is increasing with time.
A = area of loop

+
-
( ) 0v t >

x

y A

B
R

I

We visualize a high-impedance resistor R added to the circuit:

In this example, a clockwise current is set up, since this 
opposes the change in flux through the loop. The clockwise 

current then corresponds to the output voltage polarity shown. 



Example: Magnetic Field Probe

Assume 

A small loop can be used to measure the magnetic field (for AC).

( ) zBv t A
t

∂
=

∂
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Assume 

( )0 coszB B tω φ= +

( ) ( )0 sinv t A B tω ω φ= − +

Then we have

At a given frequency, the output voltage is proportional to the strength of the magnetic field. 

2A aπ=

2 fω π=

+
-

A = area of loop

x

y

C

( )v t
Note: The magnetic field is assume constant over the loop area.



Applications of Faraday’s Law

29

Faraday’s law explains:

 How AC generators work

 How transformers work  

( ) zdv t
dt
ψ

=

Output voltage of generator

Output voltage on secondary of transformer

Note: For N turns in a loop we have ( ) zdv t N
dt
ψ

=



The world's first electric generator!
(invented by Michael Faraday)
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A magnet is slid in and out of the coil, resulting in a voltage output. 

(Faraday Museum, London)



The world's first transformer!
(invented by Michael Faraday)
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The primary and secondary coils are wound together on an iron core.

(Faraday Museum, London)



AC Generators
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Diagram of a simple alternator (AC generator) with a rotating magnetic core 
(rotor) and stationary wire (stator), also showing the output voltage induced in 
the stator by the rotating magnetic field of the rotor.

http://en.wikipedia.org/wiki/Alternator

0 coszB B γ=

mω =mechanical angular velocity of magnet

0mtγ ω γ= +

zγ = angle between north pole and the  axis
(Magnetic flux comes out of the north pole.)

Open-circuit coil
Assume that Bz is 

constant over the loop.



AC Generators (cont.)
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( )0 0cosz mB B tω γ= +

( ) ( ) ( )0 0sinm mv t NAB tω ω γ= − +

( ) zdBv t NA
dt

=

( ) ( )0 cosv t V tω φ= +

so

or

( )0 0 0, , / 2m V NABω ω ω φ γ π≡ ≡ ≡ +

0
p jV V e φ= (phasor domain)

Open-circuit coil



AC Generators (cont.)
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If the magnet rotates at a fixed speed,
a sinusoidal voltage output is produced. 

( ) ( )0 cosv t V tω φ= +

Summary

Note:
The angular velocity of the magnet is the same 
as the radian frequency of the output voltage 

(for a simple two-pole magnet).

Open-circuit coil

mω ω=



AC Generators (cont.)
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( ) ( )0 cosv t V tω φ= +

Thévenin Equivalent Circuit

0
p j

ThV V e φ=

ThR = resistance of wire in coil

+
-

p
ThV

ThR

N turns

0 0 0, / 2V NAB ω φ γ π≡ ≡ +

0
p j

ThV V e φ=

Open-circuit coil
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Generators at Hoover Dam

AC Generators (cont.)



37

Generators at Hoover Dam

AC Generators (cont.)
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Transformers

A transformer changes an AC signal from one voltage to another.

http://en.wikipedia.org/wiki/Transformer
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http://en.wikipedia.org/wiki/Electric_power_transmission

 High voltages are used for transmitting power over long distances 
(less current means less conductor loss).

 Low voltages are used inside homes for convenience and safety.

Transformers (cont.)
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Transformers (cont.)

( )p p
dv t N
dt
ψ

=

( )
( )

s s

p p

v t N
v t N

= s s

p p

V N
V N

=

(phasor domain)

Hence

(time domain)

http://en.wikipedia.org/wiki/Transformer

Ideal transformer (no flux leakage): rµ →∞

rµ

( )s s
dv t N
dt
ψ

=
Note:

The sign is correct from 
Lens’ law.

Note:
The sign is correct from 

Lens’ law.
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Transformers (cont.)

( ) ( ) ( ) ( )p p s sv t i t v t i t=

Ideal transformer (no losses):

( )
( )

( )
( )

( )
( )

1

ps s

p s p

v ti t v t
i t v t v t

−
 

= =   
 

Hence

( )
( )

1

s s

p p

i t N
i t N

−
 

=   
 

(phasor domain)

1

s s

p p

I N
I N

−
 

=   
 

so

(time domain)

(power in = power out)
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Transformers (cont.)

,p s
in out

p s

V VZ Z
I I

≡ ≡

Impedance transformation (phasor domain):
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Transformers (cont.)

,p s
in out

p s

V VZ Z
I I

≡ ≡

Hence

2
pin

out s

NZ
Z N

 
=  
 

so

1 1

2
s s

p
p pp p pin s

out p s p ss s
p

p p

N NI
N NV V NZ I

Z I V I NN NV
N N

− −
   
              = = = =                        
   
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Transformers (cont.)

2
p

in L
s

N
Z Z

N
 

=  
 

Impedance transformation

LZinZ

:1N p

s

N
N

N
 

= 
 

This notation means
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Transformers (cont.)
Example: Audio matching circuit

[ ]8LZ = Ω

Speaker

[ ]50outZ = Ω

:1N

Audio 
output 
circuit

Power amplifier (PA)

Transformer

50
8

N =

The PA should see a matched load (50 [Ω]) for 
maximum power transfer to the load (speaker).
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Transformers (cont.)
Isolation transformer

An isolation transformer is used isolate the input and output circuits 
(no direct electrical connection between them). It can also be used 

to connect a grounded circuit to an ungrounded one. 

Grounded outputUngrounded input

The transformer is being used as a form of “balun”, which connects a  “balanced circuit” (the two leads are 
at a symmetric  +/- voltage with respect to ground) to an “unbalanced circuit” (where one lead is grounded).



( ) ( )ˆ cosB t z tω=

Find the voltage readout on the voltmeter.

Note:
The voltmeter is assumed to have a very high internal resistance, so  

that negligible current flows in the circuit. (We can neglect any magnetic 
field coming from the current flowing in the loop.)

Applied magnetic field:

Measurement Error from Magnetic Field

Voltmeter

-

++

-

Perfectly conducting leads

mV

x

y
a

0V

B

47



( ) ( )ˆ cosB t z tω=
( )

( )
( )

2

2

2

ˆ

sin

C

S

z
S

z

z

dE dr
dt
d B n dS
dt
d B dS
dt
d B a
dt
dB a
dt

t a

ψ

π

π

ω ω π

⋅ = −

= − ⋅

= −

= −

= −

=

∫

∫

∫



( )sinzdB t
dt

ω ω= −

48

Measurement Error from Magnetic Field (cont.)

ˆ ˆn z=

Voltmeter

-

++

-

mV

x

y
a

0V

B

C

Perfectly conducting leads

Faraday’s law:



( )2sin
C

E dr t aω ω π⋅ =∫

( )2
0 sinmV V a tωπ ω− =

49

Measurement Error from Magnetic Field (cont.)

Therefore

ˆ ˆn z=

Voltmeter

-

++

-

mV

x

y
a

0V

B

C

Perfectly conducting leads

From the last slide,

( )2
0 sinmV V a tωπ ω= +

or

Note: 
There is no voltage drop along the 

perfectly conducting leads.



Summary
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Measurement Error from Magnetic Field (cont.)

( )2
0 sinmV V a tωπ ω= +

Voltmeter

-

++

-

Perfectly conducting leads

mV

x

y
a

0V

B

Practical note: 
In such a measurement, it is good to keep the leads close together 

(or even better, twist them.)
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Twisted Pair Transmission Line

Twisted pair is used to reduced interference pickup in a 
transmission line, compared to “twin lead” transmission line. 

CAT 5 cable
(twisted pair)

Note:
Coaxial cable is 

perfectly shielded 
and has no

interference.Coax



Maxwell’s Equations 
(Differential Form)

0

vD
BE
t

B
DH J
t

ρ∇ ⋅ =
∂

∇× = −
∂

∇ ⋅ =
∂

∇× = +
∂

Electric Gauss law

Magnetic Gauss law

Faraday’s law

Ampere’s law

0 0D E B Hε µ= = Constitutive equations
52



Maxwell’s Equations
(Integral Form)

ˆ

ˆ

ˆ 0

ˆ

encl
S

C S

S

S
C S

D n dS Q

BE dr n dS
t

B n dS

DH dr i n dS
t

⋅ =

∂
⋅ = − ⋅

∂

⋅ =

∂
⋅ = + ⋅

∂

∫

∫ ∫

∫

∫ ∫









Electric Gauss law

Magnetic Gauss law

Faraday’s law

Ampere’s law

53

ˆ ( )S
S

i J n dS S= ⋅∫ current through



Maxwell’s Equations (Statics)

0
vD

E
ρ∇⋅ =

∇× =
0B

H J
∇⋅ =
∇× =

Electrostatics Magnetostatics

In statics, Maxwell's equations decouple into two independent sets.

v Eρ → J B→
54

0

vD
BE
t

B
DH J
t

ρ∇ ⋅ =

∂
∇× = −

∂
∇ ⋅ =

∂
∇× = +

∂



Maxwell’s Equations (Dynamics)
In dynamics, the electric and magnetic fields are coupled together.

BE
t

DH
t

∂
∇× = −

∂
∂

∇× =
∂

Example: 
A plane wave propagating through free space

( )ˆ cosE x t kzω= −

( )
0

1ˆ cosH y t kzω
η
 

= − 
 

E

H power flow
z

0 0k ω µ ε=

0 0 0/η µ ε=
From ECE 3317:

55

Each one, changing with time, produces the other one.

0, 0v Jρ = =

0

0

D E
B H

ε
µ

=
=
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