ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson
Dept. of ECE

Notes 18
Faraday’s Law

Example (cont.)

Find curl of \underline{E} from a static point charge

Example (cont.)

Note:

If the curl of the electric field is zero for the field from a static point charge, then by superposition it must be zero for the field from any static charge density.

This gives us Faraday's law:

$$
\nabla \times \underline{E}=\underline{0}
$$

(in statics)

Faraday's Law in Statics (Integral Form)

Stokes's theorem:

$$
\oint_{C} \underline{E} \cdot d \underline{r}=\int_{S}(\nabla \ngtr \underline{E}) \cdot \underline{\hat{n}} d S=0
$$

Here S is any "bowl" surface that is attached to C.

Hence

$$
\oint_{c} \underline{E} \cdot \underline{d r}=0
$$

Faraday's Law in Statics (Differential Form)

We show here how the integral form also implies the differential form.

$$
\text { Assume } \quad \oint_{C} \underline{E} \cdot \underline{d r}=0 \quad(\text { for any path } \mathrm{C})
$$

We then have (definition of curl): $\quad \underline{\hat{x}} \cdot \operatorname{curl} \underline{E} \equiv \lim _{\Delta s \rightarrow 0} \frac{1}{\Delta S_{x}} \oint_{C_{x}} \underline{E} \cdot \underline{d r}=0$

$\nabla \times \underline{E}=\underline{0}$ Differential (point) form of Faraday's law

Path Independence and Faraday's Law

The integral form of Faraday's law is equivalent to path independence of the voltage drop calculation in statics.

Proof:

$\oint_{C} \underline{E} \cdot d \underline{r}=0$ (in statics)
Also,

$$
\oint_{C} \underline{E} \cdot d \underline{r}=\int_{C_{1}} \underline{E} \cdot d \underline{r}-\int_{C_{2}} \underline{E} \cdot d \underline{r}
$$

Hence,

$$
\oint_{C} \underline{E} \cdot d \underline{r}=0 \quad \Leftrightarrow \quad \int_{C_{1}} \underline{E} \cdot d \underline{r}=\int_{C_{2}} \underline{E} \cdot d \underline{r}
$$

Summary of Path Independence

Equivalent properties of an electrostatic field

Path independence for $V_{A B}$

Here is a summary of the important equations related to the electric field in statics.

$$
\begin{array}{ll}
\nabla \cdot \underline{D}=\rho_{v} & \text { Electric Gauss law } \\
\nabla \times \underline{E}=\underline{0} & \text { Faraday's law } \\
\underline{D}=\varepsilon_{0} \underline{E} & \text { Constitutive equation (free space) }
\end{array}
$$

Faraday's Law: Dynamics

Experimental Law (dynamics):

$$
\nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t}
$$

This is the general Faraday's law in dynamics.

Michael Faraday*
(from Wikipedia)

$$
\underline{B}=\text { magnetic flux density }\left[\text { Webers } / \mathrm{m}^{2}\right]
$$

*Ernest Rutherford stated: "When we consider the magnitude and extent of his discoveries and their influence on the progress of science and of industry, there is no honour too great to pay to the memory of Faraday, one of the greatest scientific discoverers of all time".

Faraday's Law: Dynamics (cont.)

Magnetic field B_{z} (increasing with time)

Electric field \underline{E}

The changing magnetic field produces an electric field.
Assume a B_{z} field that $\underline{\text { increases }}$ with time:
$\underline{\underline{\hat{z}}} \cdot(\nabla \times \underline{E})=-\frac{\partial B_{z}}{\partial t}<0$$\left\{\begin{array}{l}\underline{B}=\underline{\hat{z}} B_{z}(t) \\ \frac{d B_{z}}{d t}>0\end{array}\right.$

Faraday's Law: Dynamics (cont.)

A changing magnetic field produces a circulating electric field.

$$
\underline{\underline{z}} \cdot(\nabla \times \underline{E})<0
$$

Note:
The circulation of the electric field
about the z axis is opposite to the right
hand, due to the minus sign in
Faraday's law.

Magnetic field B_{z} (increasing with time)

Electric field \underline{E}

Eddy currents are currents that flow inside a transformer core (or other conducting object) due to a changing magnetic field.

Eddy current cause power loss.

Eddy Currents (cont.)

$$
\underline{\hat{z}} \cdot(\nabla \times \underline{E})=-\frac{\partial B_{z}}{\partial t}<0
$$

$$
\sqrt{\Downarrow} \text { Cylindrical coordinates }
$$

$$
\frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho}-\frac{\partial E_{\phi}}{\partial \phi}\right)=-\frac{\partial B_{z}}{\partial t}
$$

$$
\text { Assume no } \phi \text { variation }
$$

Magnetic field B_{z} (increasing with time)

Electric field \underline{E}

Eddy Currents (cont.)

$$
\begin{aligned}
& \frac{1}{\rho}\left(\frac{\partial\left(\rho E_{\phi}\right)}{\partial \rho}\right)=-\frac{\partial B_{z}}{\partial t} \\
& \measuredangle \\
& \frac{\partial E_{\phi}}{\partial \rho}+\frac{1}{\rho} E_{\phi}=-\frac{\partial B_{z}}{\partial t} \\
& \measuredangle \\
& \frac{\partial E_{\phi}^{p}}{\partial \rho}+\frac{1}{\rho} E_{\phi}^{p}=-j \omega B_{z}^{p} \quad \text { (phasor domain) }
\end{aligned}
$$

Assume:

Transformer core

$$
\begin{aligned}
& B_{z}(t)=B_{z 0} \cos (\omega t+\phi) \text { (time domain) } \\
& B_{z}^{p}=B_{z 0} e^{i \phi} \text { (phasor domain) }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \quad \alpha=1, \quad A=-\frac{j \omega}{2} B_{z}^{p} \\
& \text { (no } \rho \text { variation) }
\end{aligned}
$$

Eddy Currents (cont.)

$$
E_{\phi}^{p}(\rho)=-\left(\frac{j \omega B_{z}^{p}}{2}\right) \rho
$$

Also, we have Ohm's law:

$$
\underline{J}=\sigma \underline{E}
$$

Hence we have:

Transformer core

$$
J_{\phi}^{p}(\rho)=-\left(\frac{j \omega \sigma B_{z}^{p}}{2}\right) \rho
$$

$$
\begin{aligned}
& B_{z}(t)=B_{z 0} \cos (\omega t+\phi) \text { (time domain) } \\
& B_{z}^{p}=B_{z 0} e^{j \phi} \text { (phasor domain) }
\end{aligned}
$$

Eddy currents*

Note that the eddy currents increase with frequency!
*The currents look like eddies or whirlpools in water.

Eddy Currents (cont.)

Laminated cores are used to reduce eddy currents.

Faraday's Law: Integral Form

$$
\nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t}
$$

Integrate both sides over an arbitrary open surface (bowl) S :

$$
\int_{S}(\nabla \times \underline{E}) \cdot \underline{\hat{n}} d S=\int_{S}\left(-\frac{\partial \underline{B}}{\partial t}\right) \cdot \underline{\hat{n}} d S
$$

Apply Stokes's theorem for the LHS:

$$
\oint_{C} \underline{E} \cdot d \underline{r}=\int_{S}\left(-\frac{\partial \underline{B}}{\partial t}\right) \cdot \underline{\hat{n}} d S
$$

Note:

The right-hand rule determines the direction of the unit normal, from the direction along C.

Faraday's law in integral form

$$
\oint_{C} \underline{E} \cdot d \underline{r}=\int_{S}\left(-\frac{\partial \underline{B}}{\partial t}\right) \cdot \underline{\hat{n}} d S
$$

Assume that the surface and the path are not changing with time:

$$
\oint_{C} \underline{E} \cdot d \underline{r}=-\frac{d}{d t} \int_{S} \underline{B} \cdot \underline{\hat{n}} d S
$$

Define magnetic flux through the surface $S: \quad \psi \equiv \int_{S} \underline{B} \cdot \underline{\hat{n}} d S$
We then have

$$
\oint_{C} \underline{E} \cdot d \underline{r}=-\frac{d \psi}{d t}
$$

Note:
The right-hand rule determines the direction of the unit normal in the flux calculation, from the direction along C.

Faraday’s Law: Summary

Summary

$$
\oint_{C} \underline{E} \cdot d \underline{r}=-\frac{d \psi}{d t}
$$

Stationary surface
where

$$
\psi \equiv \int_{S} \underline{B} \cdot \underline{\hat{n}} d S
$$

The voltage drop around a closed path is equal to the rate of change of magnetic flux through the path.

Note: The closed path can be anything: in free space, inside of a metal wire, etc.

Eddy Currents (Revisited)

Integral form of Faraday's law:

$$
\begin{aligned}
& \oint_{C} \underline{E} \cdot d \underline{r}=-\frac{d \psi}{d t}=-\frac{d}{d t}\left(\pi \rho^{2} B_{z}\right) \\
& \oint_{C} \underline{E}^{p} \cdot d \underline{r}=-j \omega \pi \rho^{2} B_{z}^{p} \quad \underline{J}=\sigma \underline{E}
\end{aligned}
$$

$$
E_{\phi}^{p}(2 \pi \rho)=-j \omega \pi \rho^{2} B_{z}^{p} \quad \stackrel{\rightharpoonup}{J}=\sigma \underline{E} \quad J_{\phi}^{p}=-j\left(\frac{\sigma \omega \rho}{2}\right) B_{z}^{p}
$$

We measure a voltage across a loop due to a changing magnetic field inside the loop.
(This is the basis for how AC generators and transformers work.)

- Magnetic field \underline{B} (B_{z} is changing with time)

Faraday’s Law for a Loop (cont.)

$$
v=v_{A B}=\int_{\underline{A}}^{B} \underline{E} \cdot d \underline{r}=\oint_{C} \underline{E} \cdot d \underline{r}
$$

Note: A lower case v denotes that it is time-varying.

Also

$$
\oint_{C} \underline{E} \cdot d \underline{r}=-\frac{d \psi}{d t}
$$

$$
(\underline{\hat{n}}=-\underline{\hat{z}})
$$

So we have

$$
v=-\frac{d \psi}{d t}
$$

$$
\psi=\int_{S}\left(-B_{z}\right) d S=-\psi_{z}
$$

Note:
The voltage drop along the PEC wire (from \underline{B} to \underline{A} inside the wire) is zero.
$\square \int_{\underline{A}}^{\frac{B}{E}} \underline{E} \underline{r}=\oint_{C} \underline{E} \cdot d \underline{r}$

Faraday’s Law for a Loop (cont.)

Hence:

$$
\begin{aligned}
& v(t)=\frac{d \psi_{z}}{d t} \\
& \psi_{z} \equiv \int_{S} B_{z} d S
\end{aligned}
$$

Faraday's Law for a Loop (cont.)

Assume a uniform magnetic field for simplicity.
(At least it is uniform over the loop area.)

Then we have:

$$
\begin{aligned}
& \psi_{z}=B_{z} A \\
& \text { so } \\
& v(t)=A \frac{d B_{z}}{d t}
\end{aligned}
$$

$$
A=\text { area of loop }
$$

Faraday's Law for a Loop (cont.)

Summary

$$
\begin{aligned}
& v(t)=\frac{d \psi_{z}}{d t} \quad \text { General form } \\
& v(t)=A \frac{d B_{z}}{d t} \text { Uniform field } \\
& A=\text { area of loop }
\end{aligned}
$$

$$
\psi_{z} \equiv \int_{S} B_{z} d S \quad \psi_{z}=\text { magnetic flux through loop in } z \text { direction }
$$

Lenz's Law

This is a simple rule to tell us the polarity of the output voltage (without having to do any calculation).

We visualize a high-impedance resistor R added to the circuit:
The output voltage polarity corresponds to a current flow that opposes the change in the flux in the loop.

In this example, a clockwise current is set up, since this
opposes the change in flux through the loop. The clockwise
current then corresponds to the output voltage polarity shown.

Note:

A right-hand rule tells us the direction of the magnetic field due to a wire carrying a current.
(A wire carrying a current in the z direction produces a magnetic field in the positive ϕ direction.)

B_{z} is increasing with time.

$$
v(t)=A \frac{d B_{z}}{d t}>0
$$

Example: Magnetic Field Probe

A small loop can be used to measure the magnetic field (for AC).

$$
v(t)=A \frac{\partial B_{z}}{\partial t}
$$

Note: The magnetic field is assume constant over the loop area.

Assume

$$
\begin{array}{r}
B_{z}=B_{0} \cos (\omega t+\phi) \\
\omega=2 \pi f
\end{array}
$$

Then we have

$$
A=\text { area of loop }
$$

$$
v(t)=-A \omega B_{0} \sin (\omega t+\phi)
$$

$$
A=\pi a^{2}
$$

At a given frequency, the output voltage is proportional to the strength of the magnetic field.

Applications of Faraday's Law

Faraday's law explains:

- How AC generators work
- How transformers work

Output voltage on secondary of transformer

Note: For N turns in a loop we have $v(t)=N \frac{d \psi_{z}}{d t}$

The world's first electric generator! (invented by Michael Faraday)

A magnet is slid in and out of the coil, resulting in a voltage output.

The world's first transformer! (invented by Michael Faraday)

The primary and secondary coils are wound together on an iron core.

AC Generators

Diagram of a simple alternator (AC generator) with a rotating magnetic core (rotor) and stationary wire (stator), also showing the output voltage induced in the stator by the rotating magnetic field of the rotor.

$$
A=\text { area of loop }
$$

AC Generators (cont.)

Open-circuit coil

or

$$
\begin{aligned}
& v(t)=V_{0} \cos (\omega t+\phi) \\
& V^{p}=V_{0} e^{j \phi} \quad(\text { phasor domain })
\end{aligned}
$$

$A=$ area of loop

$$
\left(\omega \equiv \omega_{m}, V_{0} \equiv N A B_{0} \omega, \quad \phi \equiv \gamma_{0}+\pi / 2\right)
$$

AC Generators (cont.)

Open-circuit coil

If the magnet rotates at a fixed speed, a sinusoidal voltage output is produced.

Note:

The angular velocity of the magnet is the same as the radian frequency of the output voltage (for a simple two-pole magnet).

$$
\begin{gathered}
v(t)=V_{0} \cos (\omega t+\phi) \\
\omega=\omega_{m}
\end{gathered}
$$

Summary

Generators (cont.)

Thévenin Equivalent Circuit

$$
v(t)=V_{0} \cos (\omega t+\phi) \quad V_{0} \equiv N A B_{0} \omega, \phi \equiv \gamma_{0}+\pi / 2
$$

Open-circuit coil

$$
\begin{gathered}
V_{T h}^{p}=V_{0} e^{j \phi} \\
R_{T h}=\text { resistance of wire in coil }
\end{gathered}
$$

$A=$ area of loop

AC Generators (cont.)

Generators at Hoover Dam

AC Generators (cont.)

Generators at Hoover Dam

Transformers

A transformer changes an AC signal from one voltage to another.
http://en.wikipedia.org/wiki/Transformer

Transformers (cont.)

* High voltages are used for transmitting power over long distances (less current means less conductor loss).
* Low voltages are used inside homes for convenience and safety.

http://en.wikipedia.org/wiki/Electric_power_transmission

Hence
Ideal transformer (no flux leakage): $\mu_{r} \rightarrow \infty$
$\frac{v_{s}(t)}{v_{p}(t)}=\frac{N_{s}}{N_{p}}$
(time domain)

$$
\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}
$$

(phasor domain)

Transformers (cont.)

Ideal transformer (no losses):

$$
v_{p}(t) i_{p}(t)=v_{s}(t) i_{s}(t) \quad(\text { power in }=\text { power out })
$$

Hence

$$
\frac{i_{s}(t)}{i_{p}(t)}=\frac{v_{p}(t)}{v_{s}(t)}=\left(\frac{v_{s}(t)}{v_{p}(t)}\right)^{-1}
$$

SO

$$
\begin{array}{ll}
\frac{i_{s}(t)}{i_{p}(t)}=\left(\frac{N_{s}}{N_{p}}\right)^{-1} & \frac{I_{s}}{I_{p}}=\left(\frac{N_{s}}{N_{p}}\right)^{-1} \\
\text { (time domain) } & \text { (phasor domain) }
\end{array}
$$

Transformers (cont.)

Impedance transformation (phasor domain):

$$
Z_{i n} \equiv \frac{V_{p}}{I_{p}} \quad, \quad Z_{o u t} \equiv \frac{V_{s}}{I_{s}}
$$

Transformers (cont.)

$$
Z_{\text {in }} \equiv \frac{V_{p}}{I_{p}} \quad, \quad Z_{\text {out }} \equiv \frac{V_{s}}{I_{s}}
$$

Hence

$$
\frac{Z_{\text {in }}}{Z_{\text {out }}}=\left(\frac{V_{p}}{I_{p}}\right) \frac{I_{s}}{V_{s}}=\left(\frac{V_{p}}{I_{p}}\right) \frac{I_{p}\left(\frac{N_{s}}{N_{p}}\right)^{-1}}{V_{p}\left(\frac{N_{s}}{N_{p}}\right)}=\frac{\left(\frac{N_{s}}{N_{p}}\right)^{-1}}{\left(\frac{N_{s}}{N_{p}}\right)}=\left(\frac{N_{p}}{N_{s}}\right)^{2}
$$

so

$$
\frac{Z_{\text {in }}}{Z_{\text {out }}}=\left(\frac{N_{p}}{N_{s}}\right)^{2}
$$

Transformers (cont.)

Impedance transformation

$$
Z_{i n}=\left(\frac{N_{p}}{N_{s}}\right)^{2} Z_{L}
$$

Transformers (cont.)

Example: Audio matching circuit

The PA should see a matched load (50 [Ω]) for maximum power transfer to the load (speaker).

$$
N: 1 \quad N=\sqrt{\frac{50}{8}}
$$

Transformers (cont.)

Isolation transformer

An isolation transformer is used isolate the input and output circuits (no direct electrical connection between them). It can also be used to connect a grounded circuit to an ungrounded one.

The transformer is being used as a form of "balun", which connects a "balanced circuit" (the two leads are at a symmetric +/- voltage with respect to ground) to an "unbalanced circuit" (where one lead is grounded).

Measurement Error from Magnetic Field

Find the voltage readout on the voltmeter.

Applied magnetic field: $\quad \underline{B}(t)=\underline{\hat{z}} \cos (\omega t)$

Note:

The voltmeter is assumed to have a very high internal resistance, so that negligible current flows in the circuit. (We can neglect any magnetic field coming from the current flowing in the loop.)

Measurement Error from Magnetic Field (cont.)

Faraday's law:

$$
\begin{aligned}
\oint_{C} \underline{E} \cdot \underline{d r} & =-\frac{d \psi}{d t} \\
& =-\frac{d}{d t} \int_{S} \underline{B} \cdot \underline{\hat{n}} d S \\
& =-\frac{d}{d t} \int_{S} B_{z} d S \\
& =-\frac{d}{d t}\left(B_{z} \pi a^{2}\right) \\
& =-\frac{d B_{z}}{d t}\left(\pi a^{2}\right) \\
& =\omega \sin \omega t\left(\pi a^{2}\right)
\end{aligned}
$$

Perfectly conducting leads

$$
\begin{aligned}
& \underline{B}(t)=\underline{\hat{z}} \cos (\omega t) \\
& \frac{d B_{z}}{d t}=-\omega \sin (\omega t)
\end{aligned}
$$

Measurement Error from Magnetic Field (cont.)

From the last slide,

$$
\oint_{C} \underline{E} \cdot \underline{d r}=\omega \sin \omega t\left(\pi a^{2}\right)
$$

Therefore

$$
V_{m}-V_{0}=\omega \pi a^{2} \sin (\omega t)
$$

Voltmeter

Perfectly conducting leads

Note:

There is no voltage drop along the perfectly conducting leads.

$$
V_{m}=V_{0}+\omega \pi a^{2} \sin (\omega t)
$$

Measurement Error from Magnetic Field (cont.)

Summary

$$
V_{m}=V_{0}+\omega \pi a^{2} \sin (\omega t)
$$

Practical note:

In such a measurement, it is good to keep the leads close together (or even better, twist them.)

Twisted Pair Transmission Line

Twisted pair is used to reduced interference pickup in a transmission line, compared to "twin lead" transmission line.

Balun
Twin lead

Note:
Coaxial cable is perfectly shielded and has no interference.

Maxwell's Equations (Differential Form)

$$
\begin{array}{ll}
\nabla \cdot \underline{D}=\rho_{v} & \text { Electric Gauss law } \\
\nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t} & \text { Faraday's law } \\
\nabla \cdot \underline{B}=0 & \text { Magnetic Gauss law } \\
\nabla \times \underline{H}=\underline{J}+\frac{\partial \underline{D}}{\partial t} & \text { Ampere's law } \\
\underline{D}=\varepsilon_{0} \underline{E} & \underline{B}=\mu_{0} \underline{H}
\end{array} \text { Constitutive equations }
$$

Maxwell's Equations (Integral Form)

$$
\begin{array}{ll}
\oint_{S} \underline{D} \cdot \underline{\hat{n}} d S=Q_{\text {encl }} & \text { Electric Gauss law } \\
\oint_{C} \underline{E} \cdot d \underline{r}=\int_{S}-\frac{\partial \underline{B}}{\partial t} \cdot \underline{\hat{n}} d S & \text { Faraday's law } \\
\oint_{S} \underline{B} \cdot \underline{\hat{n}} d S=0 & \text { Magnetic Gauss law } \\
\oint_{C} \underline{H} \cdot d \underline{r}=i_{S}+\int_{S} \frac{\partial \underline{D}}{\partial t} \cdot \underline{\hat{n}} d S & \text { Ampere's law } \\
& i_{S}=\int_{S} \underline{J} \cdot \underline{\hat{n}} d S \text { (current through } S \text {) }
\end{array}
$$

Maxwell's Equations (Statics)

In statics, Maxwell's equations decouple into two independent sets.

\[

\]

Maxwell’s Equations (Dynamics)

In dynamics, the electric and magnetic fields are coupled together.
Each one, changing with time, produces the other one.

$$
\begin{gathered}
\nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t} \\
\nabla \times \underline{H}=\frac{\partial \underline{D}}{\partial t} \\
\underline{D}=\varepsilon_{0} \underline{E} \\
\underline{B}=\mu_{0} \underline{H}
\end{gathered}
$$

Example:
A plane wave propagating through free space

$$
\begin{array}{rll}
\underline{E} & =\underline{\hat{x}} \cos (\omega t-k z) & k=\omega \sqrt{\mu_{0} \varepsilon_{0}} \\
\underline{H} & =\underline{\hat{y}}\left(\frac{1}{\eta_{0}}\right) \cos (\omega t-k z) & \eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}
\end{array}
$$

From ECE 3317:

