ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 21 Boundary Conditions

There is a boundary between two different materials.

Assumption: The unit normal points towards region 1.

Boundary Conditions for Dielectrics

Tangential component of electric field

The rectangular surface S (between the two paths) has <u>zero</u> area.

$$\square \qquad \int_{C_1} \underline{E} \cdot d\underline{r} = \int_{C_2} \underline{E} \cdot d\underline{r}$$

Boundary Conditions for Dielectrics

Path
$$C_1$$
: $z = 0^+$: $V_{AB} = \int_0^{\Delta x} E_x dx \approx E_{x1} \Delta x$
Path C_2 : $z = 0^-$: $V_{AB} = \int_0^{\Delta x} E_x dx \approx E_{x2} \Delta x$

Similarly,

 $E_{y1} = E_{y2}$ In general, $\underline{E}_{t1} = \underline{E}_{t2}$

Another form of the boundary condition:

$$\underline{\hat{n}} \times \underline{E}_1 = \underline{\hat{n}} \times \underline{E}_2$$

The cross product removes the normal component of the electric field and rotates the tangential part by 90°.

Normal component of electric field

Gauss's Law applied to a "pillbox" surface (height $h \rightarrow 0$):

 $D_{z1}\Delta S - D_{z2}\Delta S \approx \rho_s \Delta S$

Let $\Delta S \rightarrow 0$: $D_{z1} - D_{z2} = \rho_s$

In general, $D_{n1} - D_{n2} = \rho_s$ The direction $\underline{\hat{z}}$ is now denoted as $\underline{\hat{n}}$. This direction points towards region 1.

Hence, we have

$$\underline{\hat{n}} \cdot (\underline{D}_1 - \underline{D}_2) = \rho_s$$

 $\hat{\underline{n}}$ points toward region 1

Boundary Conditions: Summary

Summary of Boundary Conditions

 $\hat{\underline{n}}$ points towards regon 1

$$\underline{\hat{n}} \cdot (\underline{D}_1 - \underline{D}_2) = \rho_s$$

Examples of capacitors with different layers

Assume: $\mathcal{E}_{r2} > \mathcal{E}_{r1}$

Example

$$E^{top} = 2\hat{x} - 3\hat{y} + 4\hat{z}$$

$$E^{bot} = 2\hat{x} - 3\hat{y} - 3\hat{z}$$

$$E^{bot} = 2\hat{x} - 3\hat{y} - 3\hat{z}$$

$$\varepsilon^{bot} = 3\varepsilon_{0}$$

Note that the tangential electric field is continuous (as it must be).

Find
$$\rho_s$$

Note: In this example the electric field vectors are assumed to be constant (uniform) in each region.

Example

Choose
$$\underline{\hat{n}} = \underline{\hat{z}}$$

(This establishes which region is region 1.)

Region 1 is on top. Region 2 is on bottom.

Example (cont.)

$$\left(\underline{D}_{1} - \underline{D}_{2}\right) \cdot \hat{\underline{n}} = \rho_{s}$$
$$(\underline{D}^{top} - \underline{D}^{bot}) \cdot \hat{\underline{z}} = \rho_{s}$$

Hence

$$\rho_{s} = \varepsilon_{0} \varepsilon_{r}^{top} E_{z}^{top} - \varepsilon_{0} \varepsilon_{r}^{bot} E_{z}^{bot}$$
$$= \varepsilon_{0} (2) (4) - \varepsilon_{0} (3) (-3)$$

SO

$$\rho_s = 17 \varepsilon_0 \quad \left[C/m^2 \right]$$

Example (cont.)

Alternative: Choose
$$\underline{\hat{n}} = -\underline{\hat{z}}$$
 Region 1 is on bottom.
Region 2 is on top.

$$\left(\underline{D}_{1} - \underline{D}_{2}\right) \cdot \underline{\hat{n}} = \rho_{s}$$
$$\Rightarrow \left(\underline{D}^{bot} - \underline{D}^{top}\right) \cdot \left(-\underline{\hat{z}}\right) = \rho_{s}$$

(The same result is obtained.)

Example

Draw flux lines going into a dielectric (no surface charge density)

Note: The electric field below the interface has the same horizontal component, but a smaller vertical component.

Boundary Conditions for PEC

This is a <u>special case</u> of the previous boundary conditions, for which $\underline{E}_2 = 0$.

$$\underline{\underline{E}}_t = \underline{\underline{0}}$$
$$\underline{\underline{D}} \cdot \underline{\hat{n}} = \rho_s$$

(The normal points outward from the PEC.)

Boundary Conditions for PEC (cont.)

Electric lines of flux must start/end on a PEC perpendicular to the boundary.

Summary of Boundary Conditions

The normal points towards region 1. The

The normal points outward from the PEC.

Summary of Electrostatic Laws

	Point Form	Integral Form	Boundary Form*
Faraday's Law	$\nabla \times \underline{E} = \underline{0}$	$\oint_C \underline{E} \cdot d\underline{r} = 0$	$\underline{E}_{t1} - \underline{E}_{t2} = \underline{0}$
Gauss's Law	$\nabla \cdot \underline{D} = \rho_{v}$	$\oint_{S} \underline{D} \cdot \underline{\hat{n}} dS = Q_{encl}$	$\underline{\hat{n}} \cdot \left(\underline{D}_1 - \underline{D}_2\right) = \rho_s$
	Constitutive Equation: $\underline{D} = \varepsilon \underline{E} = \varepsilon_0 \varepsilon_r \underline{E}$		

* The boundary form (i.e., boundary conditions) is actually valid for arbitrary timevarying fields, not only for statics.

Boundary Condition for Potential

At the boundary:

$$\Phi_1 = \Phi_2$$

Proof:

$$V_{AB} = \int_{\underline{A}}^{\underline{B}} \underline{E} \cdot d\underline{r} = 0$$
(The path has zero length.)

