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Capacitance 

Capacitor 

[ ]F
QC
V

≡

[ ] [ ]( )F C/V1 1=

C   [F] 

Note:  
The “A” conductor has 

the positive charge 
(connected to anode). 

  Q = QA 
  V = VAB 

Notation: 

(both positive) 

Note: The value of C is always positive! 
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A capacitor is two 
metal objects with 

equal and 
opposite charge. 

(It does not 
always have to 
look like this!) 



Leyden Jar 
The Leyden Jar was one of the earliest capacitors. It was invented 
in 1745 by Pieter van Musschenbroek at the University of Leiden in 
the Netherlands (1746). 
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Typical Capacitors 

Ceramic capacitors 

The ceramic capacitor is often 
manufactured in the shape of a disk. 
After leads are attached to each side of 
the capacitor, the capacitor is completely 
covered with an insulating moisture-proof 
coating. Ceramic capacitors usually 
range in value from 1 picofarad to 0.01 
microfarad and may be used with 
voltages as high as 30,000 volts.  
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Typical Capacitors (cont.) 

Paper capacitors 

A paper capacitor is made of flat thin strips of metal 
foil conductors that are separated by waxed paper 
(the dielectric material). Paper capacitors usually 
range in value from about 300 picofarads to about 4 
microfarads. The working voltage of a paper 
capacitor rarely exceeds 600 volts.  
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This type of capacitor uses an electrolyte (sometimes wet but often dry) and requires a 
biasing voltage (there is an anode and a cathode). A thin oxide layer forms on the anode 
due to an electrochemical process, creating the dielectric. Dry electrolytic capacitors vary 
in size from about 4 microfarads to several thousand microfarads and have a working 
voltage of approximately 500 volts.   

Note: One lead (anode) is 
often longer than the other 
to indicate polarization. 

Electrolytic capacitors 

Typical Capacitors (cont.) 

+ 

- 
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Supercapacitors (Ultracapacitors) 

Typical Capacitors (cont.) 

Maxwell Technologies "MC" and 
"BC" series supercapacitors (up to 
3000 farad capacitance) 

Compared to conventional 
electrolytic capacitors, the 

energy density is typically on 
the order of thousands of 

times greater.  
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MEMS  capacitor 

Typical Capacitors (cont.) 

Variable  capacitor Capacitors for substations 
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Current - Voltage Equation 

( )

dQi
dt
d Cv
dt

dvC
dt

=

=

=

Note:  
Q is the charge that flows from 

left to right, into plate A. 
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The reference directions for voltage 
and current correspond to “passive 
sign convention” in circuit theory. 
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+ 
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- 
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Hence we have ( ) dvi t C
dt

=

“Passive sign convention” 

Current - Voltage Equation (cont.) 
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Example 

Method #1  (start with E) 

Ideal parallel plate capacitor 

Assume: 0ˆ xE x E=

0
0 0

0

B h h

AB x x
A

x

V V E dr E dx E dx

E h

= = ⋅ = =

=

∫ ∫ ∫

Find C 
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0xE h

2mA   
A

B

++++++++++++++++++ 
- - - - - - - - - - - - - - - - -   

Note that the top plate has charge on 
the lower surface, and the bottom plate 

has charge on the top surface. 



Example (cont.) 

Hence 

0

0

0

0 0

ˆ
ˆ
ˆ

A A
s A

r A

r

r x

r x

Q Q A AD n
A n E
A x E
AE
AE

ρ
ε ε
ε ε
ε ε
ε ε

= = = ⋅
= ⋅
= ⋅
=
=

0 0

0

r x

x

AEQC
V E h

ε ε
= =

[ ]0 Fr
AC
h

ε ε  =  
 

Note:  
C is only a function of the 

geometry and the permittivity! 
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Remember: 
The unit normal vector in the boundary 

condition formula always points outward from 
the conductor. On the bottom surface of the 

top plate, this means pointing down. 

rε
x

0xE h

2mA   
A

B



Example (cont.) 

Method #2  (start with ρs) 

0
A

sQ Q Aρ= =

( )
0

0

0

0 0

ˆ

ˆ ˆ

A
A s s

x s

x s

r x s

D n
xD x

D
E

ρ ρ

ρ

ρ

ε ε ρ

⋅ = =

⋅ =

=

=
0

A
s sρ ρ=
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Example (cont.) 

Hence 

0 0
0 0

B h h

AB x x x
A

V V E dr E dx E dx h E= = ⋅ = = =∫ ∫ ∫

Therefore, 

0
0

0

s
x

r

V h E h ρ
ε ε

 
= =  

 

0

0

0

s

s

r

AC
h

ρ
ρ
ε ε

=
 
 
 

[ ]0 Fr
AC
h

ε ε  =  
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Example 

εr = 6.0 (mica) 
A = 1 [cm2] 

h = 0.01 [mm]  

( )( ) [ ]

0

4
12

3 F
1 108.854 10 6.0

0.01 10

r
AC
h

ε ε

−
−

−

 =  
 

 ×
= ×  × 

[ ] [ ]pF nF530.12 0.53012C = =
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Example 

2

2 0

ˆ

ˆ
A s

A
s

A
x x s

A
s

D n
D x

D D
Q A

ρ

ρ

ρ

ρ

⋅ =

⋅ =

= =

=

1 2 0x x xD D D= =

B. C. on plate A: 

Find C 

Goal:  
Put Q and V in terms of Dx0. 

Starting assumption: 
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V

≡

0xQ D A=

(Dx is the same in both regions, from boundary conditions.) 

2  

1 x
2rε
1rε

2xE

1xE
0xD 2h

1h

A

B

+   +   +   +   +   +  +  +  +  +  +  +  +  +  +  + 

-    -    -    -    -    -   -   -   -   -   -   -   -   -   -   - 



Example (cont.) 

1 1 2 2

1 2
1 2

1 2

0 0
1 2

1 2

1 2
0

1 2

x x

x x

x x

x

V E h E h
D Dh h

D Dh h

h hD

ε ε

ε ε

ε ε

= +

= +

= +

 
= + 
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Example (cont.) 

Hence: 

0

1 2
0

1 2

1 2 1 2

1 2 1 2

1 2

1 2

1

1
1 1

x

x

D AQC
V h h D

A
h h h h

A A

A A
h h

ε ε

ε ε ε ε

ε ε

= =
 

+ 
 

= =
+ +

=
+

   
   
   

1 2

1
1 1C

C C

=
+

1
1

1

AC
h
ε

= 2
2

2

AC
h
ε

=

1 2

1 1 1
C C C
= +

or 

where 

Hence, 
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Example 

1 2 0x x xE E E= =

0xV E h=

1 1 1 1 1 0

2 2 2 2 2 0

A
s x x x
A
s x x x

D E E
D E E

ρ ε ε

ρ ε ε

= = =

= = =

Find C 

Goal:  
Put Q and V in terms of Ex0. 

Starting assumption: 
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QC
V

≡

(Ex is the same in both regions, from boundary conditions.) 

+ + + + + + + + + + +   +   +   +   +   + 

x

x h=

1xD 2xD1rε 2rε0xE

1A 2A
A

B -  -  -  -  -  -  -  -  -  - -    -    -    -    -    - 



Example (cont.) 

1 1 2 2

1 0 1 2 0 2

s s

x x

Q A A
E A E A

ρ ρ
ε ε

= +
= +

1 1 0 2 2 0

0

x x

x

A E A EQC
V E h

ε ε+
= =

1 1 2 2A AC
h h

ε ε
= +

1 2C C C= +
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Example 

0 0

0

ˆ ˆ
2 2

l l

r

B

A

b

a

E

V E dr

E dρ

ρ ρρ ρ
πε ρ πε ε ρ

ρ

  
= =   

   

= ⋅

=

∫

∫

Find Cl    

(capacitance / length) 

Coaxial cable 
rε
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a
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b
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a

b

ρ ρ π

ρ ρ π

=

= −

Note :

rε
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a
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Example (cont.) 

0

0

0

0

1
2

ln
2

b

r a

r

V d

b
a

ρ ρ
πε ε ρ

ρ
πε ε

=

 =  
 

∫



Hence we have 

0 0

0

0

ln
2

l

r

C
V b

a

ρ ρ
ρ
πε ε

= =
   

  
  

 



Therefore 

We then have 

0 F/m
2 [ ]
ln

r
lC

b
a

πε ε
=
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Example (cont.) 

0
l

l

LZ
C

=

Formula from ECE 3317: 

(characteristic impedance) 
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The characteristic impedance is one of the most important numbers that 
characterizes a transmission line. 

Coax for cable TV:  Z0 = 75 [Ω] 
Twin lead for TV: Z0 = 300 [Ω] 

Coaxial cable Twin lead 



Example (cont.) 
Formula from ECE 3317: 

1 1
p

l l

v
L C µε

= = =phase velocity

Hence 
0

l
l

L
C
µ ε

=

0 H/mln [ ]
2l

bL
a

µ
π

 =  
 

0µ µ=
Assume 

Using our expression for Cl for the coax gives: 
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0 rε ε ε=



Example (cont.) 

Hence, the characteristic impedance of the 
coaxial cable transmission line is: 

0
0 ln [ ]

2 r

bZ
a

η
π ε

Ω =  
 

where 

0
0

0

376.7603 [ ]µη
ε

= = Ω

12
0 F/m8.854187 10 [ ]ε −×

7
0 H/m4 10 [ ]µ π −= ×
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0 F/m
2 [ ]
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r
lC

b
a

πε ε
=

 
 
 

0 H/mln [ ]
2l

bL
a

µ
π

 =  
 

(intrinsic impedance of free space) 
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