ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson
Dept. of ECE

Notes 26

Electric Stored Energy

Stored Energy

Goal:

* Calculate the amount of stored electric energy in space, due to the presence of an electric field.
(Recall that in statics the electric field is produced by a charge density.)

Stored Energy (cont.)

Charge formula:

$$
\begin{array}{cl}
U_{E}=\frac{1}{2} \int_{V} \rho_{V} \Phi d V & \text { (volume charge density) } \\
U_{E}=\frac{1}{2} \int_{S} \rho_{S} \Phi d S & \text { (surface charge density) }
\end{array}
$$

Note:

We don't have a linecharge version of the charge formulas, since a line charge would have an infinite stored energy (as would a point charge).

The charge formulas require $\Phi(\underline{\infty})=0$

Electric-field formula:

$$
U_{E}=\frac{1}{2} \int_{V} \underline{D} \cdot \underline{E} d V
$$

Note:

The charge and electric field formulas will give the same answer, provided that the integration regions include all places where there is a charge or a field.

Please see the textbook for a derivation of these formulas.

Example

Find the stored energy.
A (plate area)

We assume an ideal parallel-plate capacitor (no fields outside).

Method \#1

Use the electric field formula:

$$
\begin{aligned}
& \underline{E}=\underline{\hat{x}}\left(\frac{V_{0}}{h}\right) \\
& \underline{D}=\varepsilon_{0} \varepsilon_{r} \underline{\hat{x}}\left(\frac{V_{0}}{h}\right)
\end{aligned}
$$

$$
U_{E}=\frac{1}{2} \int_{V} \underline{D} \cdot \underline{E} d V \quad \text { so } \quad U_{E}=\frac{1}{2} \int_{V} \varepsilon_{0} \varepsilon_{r}\left(\frac{V_{0}}{h}\right)^{2} d V
$$

Example (cont.)

Hence

$$
U_{E}=\frac{1}{2} \varepsilon_{0} \varepsilon_{r}\left(\frac{V_{0}}{h}\right)^{2}(A h) \quad[\mathrm{J}]
$$

We can also write this as

$$
U_{E}=\frac{1}{2}\left(\varepsilon_{0} \varepsilon_{r} \frac{A}{h}\right) V_{0}^{2}
$$

Recall that

$$
C=\varepsilon_{0} \varepsilon_{r} \frac{A}{h}
$$

Therefore, we have

$$
U_{E}=\frac{1}{2} C V_{0}^{2}
$$

Example (cont.)

Method \#2

Use charge formula:
$U_{E}=\frac{1}{2} \int_{S} \rho_{S} \Phi d S$

$$
S_{A} \quad A \text { (plate area) }
$$

(We use the surface-charge form of the formula.)

We then have:

$$
U_{E}=\frac{1}{2} \Phi_{A} \int_{S_{A}} \rho_{S} d S+\frac{1}{2} \Phi_{B} \int_{S_{B}} \rho_{S} d S
$$

Example (cont.)

$$
\begin{aligned}
U_{E} & =\frac{1}{2} \Phi_{A} Q_{A}+\frac{1}{2} \Phi_{B} Q_{B} \\
& =\frac{1}{2} \Phi_{A} Q_{A}-\frac{1}{2} \Phi_{B} Q_{A} \\
& =\frac{1}{2} Q\left(\Phi_{A}-\Phi_{B}\right)
\end{aligned}
$$

Also, we can write this as

$$
U_{E}=\frac{1}{2} Q V_{0}
$$

$$
=\frac{1}{2}\left(C V_{0}\right) V_{0}
$$

or

$$
U_{E}=\frac{1}{2} C V_{0}^{2}
$$

Note: This same derivation (method 2) actually holds for any shape capacitor.

Alternative Capacitance Formula

Using the result from the previous example, we can write

$$
C=\frac{2 U_{E}}{V^{2}}
$$

where
$U_{E}=$ stored energy in capacitor
$V=$ voltage on capacitor

This gives us an alternative method for calculating capacitance.

Alternative Capacitance Formula (cont.)

Find C (using the alternative formula).

Ideal parallel plate capacitor

Assume: $\underline{E}=\underline{\hat{x}} E_{x 0}$

$$
\begin{aligned}
V & =V_{A B}=\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}=\int_{0}^{h} E_{x} d x=\int_{0}^{h} E_{x 0} d x \\
& =E_{x 0} h
\end{aligned}
$$

Alternatìve Capacitance Formula (cont.)

$$
U_{E}=\frac{1}{2} \int_{V} \underline{D} \cdot \underline{E} d V=\frac{1}{2} \int_{V} \varepsilon(\underline{E} \cdot \underline{E}) d V=\frac{1}{2} \int_{V} \varepsilon|\underline{E}|^{2} d V=\frac{1}{2} \varepsilon E_{x 0}^{2}(A h)
$$

Therefore

$$
C=\frac{2 U_{E}}{V^{2}}=\frac{2\left(\frac{1}{2} \varepsilon E_{x 0}^{2}(A h)\right)}{\left(E_{x 0} h\right)^{2}}
$$

so
$C=\frac{\varepsilon A}{h}$

Example

Find the stored energy.
$\rho_{v 0}\left[\mathrm{C} / \mathrm{m}^{3}\right]$

$$
\begin{aligned}
& U_{E}=\frac{1}{2} \int_{V} \underline{D} \cdot \underline{E} d V \\
& \underline{E}=\underline{E}(r)=\underline{\hat{r}} E_{r}(r)
\end{aligned}
$$

Solid sphere of uniform volume charge density (not a capacitor!)

Gauss's Law:

$$
\underline{\underline{E}=\underline{\hat{r}}\left(\frac{\rho_{v 0}\left(\frac{4}{3} \pi r^{3}\right)}{4 \pi \varepsilon_{0} r^{2}}\right)} \begin{gathered}
r>a \\
\underline{E}=\underline{\hat{r}}\left(\frac{\rho_{v 0} \frac{4}{3} \pi a^{3}}{4 \pi \varepsilon_{0} r^{2}}\right)
\end{gathered}
$$

Example (cont.)

$$
\begin{aligned}
U_{E} & =\frac{\varepsilon_{0}}{2} \int_{V}|E|^{2} d V=\frac{\varepsilon_{0}}{2} \int_{V} E_{r}^{2}(r) d V \\
& =\frac{\varepsilon_{0}}{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} E_{r}^{2}(r) r^{2} \sin \theta d r d \theta d \phi \\
& =\frac{\varepsilon_{0}}{2}(2 \pi)(2) \int_{0}^{\infty} E_{r}^{2}(r) r^{2} d r
\end{aligned}
$$

$$
\rho_{v 0}\left[\mathrm{C} / \mathrm{m}^{3}\right]
$$

Hence we have

$$
U_{E}=2 \pi \varepsilon_{0} \int_{0}^{a}\left(\frac{\rho_{v 0} \frac{4}{3} \pi r^{3}}{4 \pi \varepsilon_{0} r^{2}}\right)^{2} r^{2} d r+2 \pi \varepsilon_{0} \int_{a}^{\infty}\left(\frac{\rho_{v 0} \frac{4}{3} \pi a^{3}}{4 \pi \varepsilon_{0} r^{2}}\right)^{2} r^{2} d r
$$

Example (cont.)

Result after simplifying:

$$
U_{E}=\frac{\rho_{v 0}^{2}}{\varepsilon_{0}}\left(\frac{4 \pi}{15}\right) a^{5}
$$

Denote $\quad Q=\rho_{\nu 0}\left(\frac{4}{3} \pi a^{3}\right)$

$$
\text { so that } \quad \rho_{v 0}=Q\left(\frac{3}{4 \pi a^{3}}\right)
$$

We then have:

$$
U_{E}=\frac{1}{\varepsilon_{0}}\left(Q\left(\frac{3}{4 \pi a^{3}}\right)\right)^{2}\left(\frac{4 \pi}{15}\right) a^{5}
$$

Example (cont.)

Final result:

$$
U_{E}=\frac{1}{a}\left(\frac{Q^{2}}{\varepsilon_{0}}\right)\left(\frac{3}{20 \pi}\right)[\mathrm{J}]
$$

Note:

This is the energy that it takes to assemble (force together) the charge inside the cloud from infinity.
Note:

$$
\begin{aligned}
U_{E} \rightarrow \infty & \begin{array}{l}
\text { It takes an infinite amount of energy to make an } \\
\text { ideal point charge! }
\end{array} \\
\text { as } \quad a \rightarrow 0 & \text { ider }
\end{aligned}
$$

(The same conclusion holds for an ideal line charge.)

Find the "radius" of an electron.

$$
\begin{gathered}
U_{E}=\frac{1}{a}\left(\frac{Q^{2}}{\varepsilon_{0}}\right)\left(\frac{3}{20 \pi}\right) \Rightarrow a=\frac{Q^{2}}{U_{E}}\left(\frac{3}{20 \pi \varepsilon_{0}}\right) \\
Q=q_{e}=-1.6022 \times 10^{-19} \quad[\mathrm{C}]
\end{gathered}
$$

Assume that all of the stored energy is in the form of electrostatic energy: $U_{E}=m c^{2}$
We have:

$$
\left.\begin{array}{c}
m=9.1094 \times 10^{-31}[\mathrm{~kg}] \\
c \equiv 2.99792458 \times 10^{8}[\mathrm{~m} / \mathrm{s}]
\end{array}\right\} \Rightarrow U_{E}=m c^{2}=8.1871 \times 10^{-14}[\mathrm{~J}]
$$

Hence $a=1.69 \times 10^{-15}[\mathrm{~m}] \quad$ This is one form of the "classical electron radius".

