ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 27 DC Currents

KCL Law

$$\sum_{n=1}^{N} i_n = 0$$

or
 $i_{in}^{tot} = 0$

Note:

The "node" can be a single point or a larger region.

Or we can say
$$i_{out}^{tot} = 0$$

A proof of the KCL law is given next.

The node forms the top (anode) plate of a stray capacitor.

$$i_{in}^{tot} = C \frac{dv}{dt}$$

Two cases for which the KCL law is valid:

In general, the KCL law will be accurate if the size of the "node" is small compared with the wavelength λ_0 .

Currents enter a node at some frequency *f*.

f	λ_0
60 Hz	5000 [km]
1 kHz	300 [km]
1 MHz	300 [m]
1 GHz	30 [cm]

$$\lambda_0 = \frac{c}{f} = \frac{2.99792458 \times 10^8}{f}$$

Example where the KCL is <u>not</u> valid Open-circuited transmission line (ECE 3317)

Current enters this shaded region ("node") but does not leave.

General volume (3D) form of KCL equation:

$$i_{out} = \oint_{S} \underline{J} \cdot \underline{\hat{n}} \, dS = 0$$

(valid for D.C. currents)

The total current flowing out (or in) must be zero: whatever flows in must flow out.

KCL Law (Differential Form)

To obtain the *differential form* of the KCL law for static (D.C.) currents, start with the definition of divergence:

$$\nabla \cdot \underline{J} \equiv \lim_{\Delta V \to 0} \frac{1}{\Delta V} \oint_{\Delta S} \underline{J} \cdot \hat{\underline{n}} \, dS$$

$$\oint_{\Delta S} \underline{J} \cdot \underline{\hat{n}} \, dS = i_{out} = 0$$

(valid for D.C. currents)

Important Current Formulas

These two formulas hold in general (not only at DC):

Ohm's Law

$$\underline{J} = \sigma \underline{E}$$

(This is an experimental law that was introduced earlier in the semester.)

Charge-Current Formula

$$\underline{J} = \rho_v \underline{v}$$

(This was derived earlier in the semester.)

Resistor Formula

Joule's Law

(Please see Appendix A for a derivation.)

The power dissipated inside the body as heat is:

$$P_{d} = \int_{V} \underline{J} \cdot \underline{E} \, dV = \int_{V} \sigma \left| \underline{E} \right|^{2} dV = \int_{V} \frac{\left| \underline{J} \right|^{2}}{\sigma} \, dV \quad [W]$$

Power Dissipation by Resistor

$$P_{d} = J_{x}E_{x} \Delta V$$

$$= \left(\frac{I}{A}\right)\left(\frac{V}{L}\right)\Delta V$$

$$= IV$$
Hence
$$P_{d} = VI$$

$$P_{d} = RI^{2}$$

Note: The passive sign convention applies to the VI formula.

RC Analogy

Goal:

Assuming we know how to solve the *C* problem (i.e., find *C*), can we solve the *R* problem (find *R*)?

(Please see Appendix B for a derivation.)

Recipe for calculating resistance:

- 1) Calculate the capacitance of the corresponding *C* problem.
- 2) Replace ε everywhere with σ to obtain *G*.
- 3) Take the reciprocal to obtain *R*.

In symbolic form:

$$\mathcal{E} \to \sigma$$
$$C \to G$$

(Please see Appendix B for a derivation.)

This is a special case: A <u>homogeneous</u> medium of conductivity σ surrounds the two conductors (there is only <u>one</u> value of σ).

 σ = conductivity in resistor problem

 ε = permittivity in capacitor problem

The resistance R of the resistor problem is related to the capacitance C of the capacitor problem as follows:

$$RC = \left(\frac{\varepsilon}{\sigma}\right)$$

Example

Note that the ε cancels out!

Find the resistance

Note:

We cannot use the *RC* formula, since there is more than one region (not a single conductivity).

C problem:

Hence, we have

$$R = R_1 + R_2 \qquad \qquad R_1 = \frac{h_1}{\sigma_1 A} \qquad \qquad R_2$$

 $=\frac{h_2}{\sigma_2 A}$

Lossy Capacitor

(The proof is in Appendix C.)

$$C = \frac{\varepsilon A}{h}$$

$$R = \frac{h}{\sigma A}$$

Note: The time constant is

$$\tau = RC$$

Appendix A

Derivation of Joule's Law

Joule's Law

 $\Delta W = \text{work (energy) given to a}$ small volume of charge as it moves inside the conductor from point <u>A</u> to point <u>B</u>. This goes to heat!

(There is no acceleration of charges in steady state, as this would cause current to change along the conductor, violating the KCL law.)

$$\Delta W = \Delta Q \ V_{AB}$$

$$\approx \left(\rho_{v} \ \Delta V\right) \int_{\underline{A}}^{\underline{B}} \underline{E} \cdot \underline{dr}$$

$$\approx \left(\rho_{v} \ \Delta V\right) \underline{E} \cdot \underline{\Delta r}$$

$$= \Delta V \left(\rho_{v} \ \underline{\Delta r} \ \right) \cdot \underline{E} = \Delta V \left(\rho_{v} \ \underline{\Delta r} \ \underline{\Delta t} \ \right) \cdot \underline{E} \ \Delta t$$

Joule's Law (cont.)

$$\Delta W = \Delta V \left(\rho_{v} \frac{\Delta \underline{r}}{\Delta t} \right) \cdot \underline{E} \,\Delta t = \Delta V \left(\rho_{v} \underline{v} \right) \cdot \underline{E} \,\Delta t$$

power / volume =
$$\left(\frac{\Delta W}{\Delta t}\right) \left(\frac{1}{\Delta V}\right) = (\rho_v \underline{v}) \cdot \underline{E}$$

= $\underline{J} \cdot \underline{E}$

The total power dissipated is then

We can also write

$$P_d = \int_V \underline{J} \cdot \underline{E} \, dV \, \left[\mathbf{W} \right]$$

$$P_{d} = \int_{V} \sigma \left| \underline{E} \right|^{2} dV = \int_{V} \frac{\left| \underline{J} \right|^{2}}{\sigma} dV \quad [W]$$

Appendix B

Derivation of RC Analogy and RC Formula

RC Analogy

RC Analogy (cont.)

Theorem: $\underline{E}^C = \underline{E}^R$ (same field in both problems)

RC Analogy (cont.)

Proof of "theorem"

"C problem"

"R problem"

 $\nabla \cdot \underline{D} = 0 \qquad \nabla \cdot \underline{J} = 0$ $\implies \nabla \cdot (\varepsilon \underline{E}) = 0 \qquad \implies \nabla \cdot (\sigma \underline{E}) = 0$

• Same differential equation since $\varepsilon(\underline{r}) = \sigma(\underline{r})$

Same B. C. since the same voltage is applied

Hence,
$$E^C = E^R$$

(The two electric fields must be the same function from the uniqueness of the solution to the differential equation.)

RC Analogy (cont.)

$$C = \frac{Q}{V} = \frac{Q_A}{V_{AB}}$$
$$= \frac{\oint \rho_s \, dS}{\int \frac{B}{A} \underline{E} \cdot \underline{dr}}$$

Use
$$\rho_s = \underline{D} \cdot \underline{\hat{n}} = \varepsilon \underline{E} \cdot \underline{\hat{n}}$$

$$C = \frac{\oint \varepsilon \underline{E} \cdot \underline{\hat{n}} \, dS}{\int_{\underline{A}}^{\underline{B}} \underline{E} \cdot \underline{dr}}$$

"C Problem"

RC Analogy (cont.)

$$R = \frac{V}{I} = \frac{V_{AB}}{I_A}$$
$$= \frac{\int_{A}^{B} \underline{E} \cdot \underline{dr}}{\oint_{S_A} \underline{J} \cdot \underline{\hat{n}} \, dS}$$

Use
$$\underline{J} = \sigma \underline{E}$$

Hence

$$R = \frac{\int_{\underline{A}}^{\underline{B}} \underline{E} \cdot \underline{dr}}{\oint_{S_{A}} \sigma \underline{E} \cdot \underline{\hat{n}} \ dS}$$

$$\sigma(\underline{r}) = F(\underline{r})$$

"R Problem"

RC Analogy (cont.)

Compare:

Recall that
$$\sigma(\underline{r}) = \varepsilon(\underline{r}) = F(\underline{r})$$

Hence
$$C = G$$

RC Formula

This is a special case: A <u>homogeneous</u> medium of conductivity σ surrounds the two conductors (there is only <u>one</u> value of σ).

Hence,

$$G = C\left(\frac{\sigma}{\varepsilon}\right)$$
 or $RC = \left(\frac{\varepsilon}{\sigma}\right)$

Appendix C

Equivalent Circuit for a Lossy Capacitor

Lossy Capacitor

Derivation of equivalent circuit

Total (net) current entering top (A) plate:

Therefore,

$$i_{in}^{A}(t) = i(t) - J_{x}A = \frac{dQ}{dt} \qquad \qquad i(t) = J_{x}A + \frac{dQ}{dt}$$

Lossy Capacitor (cont.)

Lossy Capacitor (cont.) $A \left[m^2 \right]$ i(t)v(t) \underline{E} \underline{J} h \mathcal{E}, σ X i(t) $=\frac{v(t)}{t}$ i(t)+Cv(t)R

This is the KCL equation for a resistor in parallel with a capacitor.

Lossy Capacitor (cont.)

Note on displacement current:

We can also write the current as

Conduction current

Displacement current

