ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 27
DC Currents

Wires meet at a "node"

$$
\begin{aligned}
& \sum_{n=1}^{N} i_{n}=0 \\
& \text { or } \\
& i_{\text {tin }}^{\text {tot }}=0
\end{aligned}
$$

Note:
The "node" can be a single point or a larger region.

Or we can say $i_{\text {out }}^{\text {tot }}=0$

A proof of the KCL law is given next.

KCL Law (cont.)

A single node is considered.

The node forms the top (anode) plate of a stray capacitor.

$$
i_{i n}^{t o t}=C \frac{d v}{d t}
$$

KCL Law (cont.)

Two cases for which the KCL law is valid:

$$
i_{i n}^{\text {tot }}=C \frac{d v}{d t}
$$

2) As area of node $A \rightarrow 0$

$$
\Longrightarrow \begin{aligned}
& A \rightarrow 0 \Rightarrow C \rightarrow 0 \\
& i_{i n}^{\text {tot }}=0
\end{aligned}
$$

KCL Law (cont.)

In general, the KCL law will be accurate if the size of the "node" is small compared with the wavelength λ_{0}.

Currents enter a node at some frequency f.

f	λ_{0}
60 Hz	$5000[\mathrm{~km}]$
1 kHz	$300[\mathrm{~km}]$
1 MHz	$300[\mathrm{~m}]$
1 GHz	$30[\mathrm{~cm}]$

$$
\lambda_{0}=\frac{c}{f}=\frac{2.99792458 \times 10^{8}}{f}
$$

KCL Law (cont.)

Example where the KCL is not valid
Open-circuited transmission line (ECE 3317)

Current enters this shaded region ("node") but does not leave.

$I(z)=$ phasor domain current

KCL Law (cont.)

General volume (3D) form of KCL equation:

$$
i_{\text {out }}=\oint_{S} \underline{J} \cdot \underline{\hat{n}} d S=0
$$

(valid for D.C. currents)
The total current flowing out (or in) must be zero: whatever flows in must flow out.

KCL Law (Differential Form)

To obtain the differential form of the KCL law for static (D.C.) currents, start with the definition of divergence:

$$
\nabla \cdot \underline{J} \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \oint_{\Delta S} \underline{J} \cdot \underline{\hat{n}} d S
$$

For the right-hand side:
$\oint_{\Delta S} \underline{J} \cdot \underline{\hat{n}} d S=i_{\text {out }}=0$

Hence

$$
\nabla \cdot \underline{J}=0
$$

(valid for D.C. currents)

Important Current Formulas

These two formulas hold in general (not only at DC):

Ohm's Law

$$
\underline{J}=\sigma \underline{E} \quad \begin{aligned}
& \text { (This is an experimental law that was } \\
& \text { introduced earlier in the semester.) }
\end{aligned}
$$

Charge-Current Formula

$$
\underline{J}=\rho_{V} \underline{V} \quad \text { (This was derived earlier in the semester.) }
$$

Resistor Formula

A long narrow resistor: $\underline{E} \approx \underline{\hat{x}} E_{x 0}$

L

$$
\begin{aligned}
E_{x 0} & =\frac{V}{L} \\
J_{x} & =\sigma E_{x 0}=\sigma\left(\frac{V}{L}\right) \\
I & =J_{x} A=\sigma\left(\frac{V}{L}\right) A
\end{aligned}
$$

Solve for V from the last equation: $V=I\left(\frac{L}{\sigma A}\right)$
We also have that $\quad R=\frac{V}{I}$

$$
R=\left(\frac{L}{\sigma A}\right) \quad[\Omega]
$$

Joule's Law

(Please see Appendix A for a derivation.)

The power dissipated inside the body as heat is:

Power Dissipation by Resistor

Resistor

Passive sign convention labeling

$$
\Delta V=A L
$$

$$
\begin{aligned}
P_{d} & =J_{x} E_{x} \Delta V \\
& =\left(\frac{I}{A}\right)\left(\frac{V}{L}\right) \Delta V \\
& =I V
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P_{d}=V I \\
& P_{d}=R I^{2}
\end{aligned}
$$

Note: The passive sign convention applies to the VI formula.

RC Analogy

Insulating material

$$
\varepsilon(\underline{r})=F(\underline{r})
$$

$+V_{A B}$ - (same conductors)
"C problem"

Conducting material

$$
\sigma(\underline{r})=F(\underline{r})
$$

$+V_{A B}{ }^{-}$
" R problem"

Goal:
Assuming we know how to solve the C problem (i.e., find C), can we solve the R problem (find R)?

(Please see Appendix B for a derivation.)

Recipe for calculating resistance:

1) Calculate the capacitance of the corresponding C problem.
2) Replace ε everywhere with σ to obtain G.
3) Take the reciprocal to obtain R.
$\varepsilon \rightarrow \sigma$
In symbolic form:

$$
C \rightarrow G
$$

(Please see Appendix B for a derivation.)

This is a special case: A homogeneous medium of conductivity σ surrounds the two conductors (there is only one value of σ).

$$
\begin{aligned}
& \sigma=\text { conductivity in resistor problem } \\
& \varepsilon=\text { permittivity in capacitor problem }
\end{aligned}
$$

The resistance R of the resistor problem is related to the capacitance C of the capacitor problem as follows:

$$
R C=\left(\frac{\varepsilon}{\sigma}\right)
$$

Example

Find R

C problem:

Method \#1 (RC analogy or "recipe")

$$
C=\frac{\varepsilon A}{h}
$$

$$
\begin{aligned}
& \varepsilon \rightarrow \sigma \\
& C \rightarrow G \\
& C=\frac{\varepsilon A}{h} \quad \Rightarrow G=\frac{\sigma A}{h} \\
& \text { Hence } \quad R=\frac{h}{\sigma A}
\end{aligned}
$$

Example (cont.)

Find R

C problem:

Note that the ε cancels out!

Example

Find the resistance

Note:
We cannot use the $R C$ formula, since there is more than one region (not a single conductivity).

Example (cont.)

C problem:

$$
\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \quad C_{1}=\frac{\varepsilon_{1} A}{h_{1}} \quad C_{2}=\frac{\varepsilon_{2} A}{h_{2}}
$$

Example (cont.)

Example (cont.)

Hence, we have

$$
R=R_{1}+R_{2} \quad R_{1}=\frac{h_{1}}{\sigma_{1} A} \quad R_{2}=\frac{h_{2}}{\sigma_{2} A}
$$

Lossy Capacitor

This is modeled by a parallel equivalent circuit (The proof is in Appendix C.)

$$
\begin{array}{cc}
C=\frac{\varepsilon A}{h} & \text { Note: } \\
R=\frac{h}{\sigma A} & \tau=R C \\
\text { The time constant is } \\
&
\end{array}
$$

Appendix A

Derivation of Joule's Law

Joule's Law

$\rho_{v}=$ charge density from electrons

$\Delta W=$ work (energy) given to a small volume of charge as it moves inside the conductor from point \underline{A} to point \underline{B}.

This goes to heat!
(There is no acceleration of charges in steady state, as this would cause current to change along the conductor, violating the KCL law.)

$$
\begin{aligned}
\Delta W & =\Delta Q V_{A B} \\
& \approx\left(\rho_{v} \Delta V\right) \int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r} \\
& \approx\left(\rho_{v} \Delta V\right) \underline{E} \cdot \underline{\Delta r} \\
& =\Delta V\left(\rho_{v} \underline{\Delta r}\right) \cdot \underline{E}=\Delta V\left(\rho_{v} \frac{\Delta \underline{r}}{\Delta t}\right) \cdot \underline{E} \Delta t
\end{aligned}
$$

$$
\begin{aligned}
& \Delta W=\Delta V\left(\rho_{v} \frac{\Delta \underline{r}}{\Delta t}\right) \cdot \underline{E} \Delta t=\Delta V\left(\rho_{v} \underline{v}\right) \cdot \underline{E} \Delta t \\
& \text { power / volume }=\left(\frac{\Delta W}{\Delta t}\right)\left(\frac{1}{\Delta V}\right)=\left(\rho_{v} \underline{v}\right) \cdot \underline{E} \\
& =\underline{J} \cdot \underline{E}
\end{aligned}
$$

The total power dissipated is then
We can also write

$$
P_{d}=\int_{V} \underline{J} \cdot \underline{E} d V[\mathrm{~W}] \quad P_{d}=\int_{V} \sigma|\underline{E}|^{2} d V=\int_{V} \frac{|\underline{J}|^{2}}{\sigma} d V[\mathrm{~W}]
$$

Appendix B

Derivation of RC Analogy and RC Formula

RC Analogy

RC Analogy (cont.)

Theorem: $\underline{E}^{C}=\underline{E}^{R} \quad$ (same field in both problems)

RC Analogy (cont.)

Proof of "theorem"

$$
\begin{array}{lll}
& \text { "C problem" } & \text { "R problem" } \\
& \nabla \cdot \underline{D}=0 \\
\Rightarrow & \nabla \cdot(\varepsilon \underline{E})=0 \quad \nabla \cdot \underline{J}=0 \\
\Rightarrow \nabla \cdot(\sigma \underline{E})=0
\end{array}
$$

- Same differential equation since $\varepsilon(\underline{r})=\sigma(\underline{r})$
- Same B. C. since the same voltage is applied

Hence, $\quad E^{C}=E^{R}$
(The two electric fields must be the same function from the uniqueness of the solution to the differential equation.)

RC Analogy (cont.)

$$
\begin{aligned}
C= & \frac{Q}{V}=\frac{Q_{A}}{V_{A B}} \\
= & \frac{\oint_{S_{A}} \rho_{s} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}
\end{aligned}
$$

Use $\rho_{s}=\underline{D} \cdot \underline{\hat{n}}=\varepsilon \underline{E} \cdot \underline{\hat{h}}$

Hence

$$
C=\frac{\oint_{S_{A}} \varepsilon \underline{E} \cdot \hat{\hat{n}} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}
$$

$\varepsilon(\underline{r})=F(\underline{r})$

"C Problem"

RC Analogy (cont.)

$$
\begin{aligned}
& R=\frac{V}{I}=\frac{V_{A B}}{I_{A}} \\
& =\frac{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}{\oint_{S_{A}} \underline{J} \cdot \underline{\hat{n}} d S} \\
& \text { Use } \underline{J}=\sigma \underline{E}
\end{aligned}
$$

Hence

$$
R=\frac{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}{\oint_{S_{A}} \sigma \underline{E} \cdot \underline{\hat{n}} d S}
$$

$$
\sigma(\underline{r})=F(\underline{r})
$$

" R Problem"

RC Analogy (cont.)

Compare:

$$
C=\frac{\oint_{S_{A}} \varepsilon \underline{E} \cdot \underline{\hat{n}} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}} \quad G=\frac{1}{R}=\frac{\oint_{S_{A}} \sigma \underline{E} \cdot \underline{\hat{n}} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}
$$

$$
\text { Recall that } \sigma(\underline{r})=\varepsilon(\underline{r})=F(\underline{r})
$$

Hence $\quad C=G$

RC Formula

This is a special case: A homogeneous medium of conductivity σ surrounds the two conductors (there is only one value of σ).

$$
C=\varepsilon \frac{\oint_{S_{A}} \underline{E} \cdot \underline{\hat{n}} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}} \quad G=\sigma \frac{\oint_{S_{A}} \underline{E} \cdot \underline{\hat{n}} d S}{\int_{\underline{A}}^{B} \underline{E} \cdot \underline{d r}}
$$

Hence,

$$
G=C\left(\frac{\sigma}{\varepsilon}\right) \quad \text { or } \quad \quad R C=\left(\frac{\varepsilon}{\sigma}\right)
$$

Appendix C

Equivalent Circuit for a Lossy Capacitor

Lossy Capacitor

Derivation of equivalent circuit

Total (net) current entering top (A) plate:
Therefore,

$$
i_{i n}^{A}(t)=i(t)-J_{x} A=\frac{d Q}{d t} \quad i(t)=J_{x} A+\frac{d Q}{d t}
$$

Lossy Capacitor (cont.)

$$
\begin{aligned}
i(t) & =J_{\chi} A+\frac{d Q}{d t} \\
& =\sigma E_{x} A+A \frac{d \rho_{s}^{A}}{d t} \\
& =\sigma\left(\frac{v}{h}\right) A+A \frac{d D_{\chi}}{d t} \\
& =\frac{v}{\left(\frac{h}{\sigma A}\right)}+A \varepsilon \frac{d E_{x}}{d t}
\end{aligned}
$$

Lossy Capacitor (cont.)

$$
i(t)=\frac{v(t)}{R}+C \frac{d v(t)}{d t}
$$

This is the KCL equation for a resistor in parallel with a capacitor.

Lossy Capacitor (cont.)

Note on displacement current:
We can also write the current as

$$
i(t)=J_{x} A+\frac{d D_{x}}{d t} A
$$

Conduction current

