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KCL Law 
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Wires meet at a “node” 
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Note:  
The “node” can be a single 

point or a larger region. 

A proof of the KCL law is given next.  
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KCL Law (cont.) 
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C is the stray capacitance 
between the “node” and ground. 

A = surface area of the “node.” 
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A single node is considered. 

The node forms the top (anode) plate of a stray capacitor. 
Ground 
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KCL Law (cont.) 

1) In “steady state”  (no time change)  

2)   As area of node A → 0 
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Two cases for which the KCL law is valid: 
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KCL Law (cont.) 

In general, the KCL law will be accurate if the size of the 
“node” is small compared with the wavelength λ0. 

8

0
2.99792458 10c

f f
λ ×

= =

f λ0 

60 Hz 5000 [km] 
1 kHz 300 [km] 
1 MHz 300 [m] 
1 GHz 30 [cm] 
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Node 

Currents enter a node at some frequency f.  



KCL Law (cont.) 
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Current enters this shaded region (“node”) but does not leave. 
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Example where the KCL is not valid 

Open-circuited transmission line (ECE 3317) 

I(z) = phasor domain current 



General volume (3D) form of KCL equation: 

ˆ 0out
S

i J n dS= ⋅ =∫
(valid for D.C. currents) 
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KCL Law (cont.) 

The total current flowing out (or in) must be zero: whatever flows in must flow out. 
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KCL Law (Differential Form) 

To obtain the differential form of the KCL law for static (D.C.) 
currents, start with the definition of divergence: 
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J 
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(valid for D.C. currents) 

For the right-hand side: 
Hence 
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Important Current Formulas 

Ohm’s Law 

J Eσ=

Charge-Current Formula 

vJ vρ=

(This is an experimental law that was 
introduced earlier in the semester.) 

(This was derived earlier in the semester.) 

These two formulas hold in general (not only at DC): 
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Resistor Formula 
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Solve for V from the last equation: 

[ ]LR
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Hence we have 

We also have that 

A long narrow resistor:  0ˆ xE x E≈ Note:  
The electric field is constant (does not change with x) 

since the current must be uniform (KCL law). 
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Joule’s Law 
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Conducting body 

J Eσ=
E

σ

[ ]
2

2
Wd
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P J E dV E dV dVσ

σ
= ⋅ = =∫ ∫ ∫

The power dissipated inside the body as heat is: 

(Please see Appendix A for a derivation.) 



Power Dissipation by Resistor 
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Hence 

Note: The passive sign convention applies to the VI formula. 
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Resistor 
Passive sign convention labeling 

V AL∆ =
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Assume a uniform current. 



RC Analogy 

Goal:  
Assuming we know how to solve the C problem (i.e., find C), can we 
solve the R problem (find R)? 

“C problem” “R problem” 
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( ) ( )r F rε =
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( ) ( )r F rσ =
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Conducting material 

(same conductors) 



C G
ε σ→

→

RC Analogy 

Recipe for calculating resistance: 

1) Calculate the capacitance of the corresponding C problem. 

2) Replace ε  everywhere with σ  to obtain G. 

3) Take the reciprocal to obtain R. 

In symbolic form: 
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(Please see Appendix B for a derivation.) 



This is a special case: A homogeneous medium of conductivity σ  
surrounds the two conductors (there is only one value of  σ). 

RC Formula 

RC ε
σ

 =  
 
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σ  = conductivity in resistor problem 
ε  = permittivity in capacitor problem 

The resistance R of the resistor problem is related to the capacitance C 
of the capacitor problem as follows: 

(Please see Appendix B for a derivation.) 



Example 

Find R 

C problem: 

C G
ε σ→

→
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Method #1 (RC analogy or “recipe”) 
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Example (cont.) 
Find R 

C problem: 

AC
h

ε
=

Method #2 (RC formula) 
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Note that the ε cancels out!  



Example 

Find the resistance 

Note:  
We cannot use the RC formula, since there is more than one region 

(not a single conductivity). 
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Example (cont.) 

C problem: 
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Example (cont.) 
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1 2R R R= + 1
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Example (cont.) 
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Lossy Capacitor 

AC
h

ε
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=

This is modeled by a parallel equivalent circuit  
(The proof is in Appendix C.) 

Note:  
The time constant is  

RCτ =
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Appendix A 
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Derivation of Joule’s Law 



Joule’s Law 
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≈ ∆ ⋅ ∆

∆ = ∆ ∆ ⋅ = ∆ ⋅ ∆ ∆ 

∫

∆W = work (energy) given to a 
small volume of charge as it 
moves inside the conductor 

from point A to point B. 
 

This goes to heat! 

(There is no acceleration of charges 
in steady state, as this would cause 

current to change along the 
conductor, violating the KCL law.) 

24 

Conducting body 

ρv = charge density from electrons 
in conduction band 
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Joule’s Law (cont.) 
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The total power dissipated is then 
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Appendix B 
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Derivation of RC Analogy and RC Formula 



RC Analogy 

“C problem” “R problem” 
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( ) ( )r F rε =
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( ) ( )r F rσ =
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(same conductors) 



RC Analogy (cont.) 

Theorem:  EC = ER     (same field in both problems) 

“R problem” 
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(same conductors) 

“C problem” 

( ) ( )r F rε =
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“C problem” “R problem” 

( )
0

0
D

Eε
∇ ⋅ =

∇ ⋅ = ( )
0

0
J

Eσ
∇ ⋅ =

∇ ⋅ =

 Same differential equation since ε (r)  = σ (r) 
 Same B. C. since the same voltage is applied 

RC Analogy (cont.) 
Proof of “theorem” 

Hence, 
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(The two electric fields must be the same function from the uniqueness of the 
 solution to the differential equation.) 
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RC Analogy (cont.) 
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“R Problem” 

J Eσ=Use 
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Hence 

( ) ( ) ( )r r F rσ ε= =
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RC Analogy (cont.) 

Recall that 
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Compare: 



This is a special case: A homogeneous medium of conductivity σ  
surrounds the two conductors (there is only one value of  σ). 

RC Formula 
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Appendix C 
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Equivalent Circuit for a Lossy Capacitor 
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Lossy Capacitor 

Therefore, 

( ) ( )A
in x

dQi t i t J A
dt

= − =

Total (net) current entering top (A) plate: 

( ) x
dQi t J A
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= +

Derivation of equivalent circuit 
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Lossy Capacitor (cont.) 
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Lossy Capacitor (cont.) 

( ) ( ) ( )v t dv t
i t C

R dt
= +

This is the KCL equation for a resistor in parallel with a capacitor. 
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Lossy Capacitor (cont.) 

We can also write the current as 

( ) x
x

dDi t J A A
dt

= +

Conduction current  Displacement current  

DH J
t

∂
∇ × = +

∂

Ampere’s law: 

Conduction current 
(density)  

Displacement current 
(density)  

,ε σ
+ + + + + + + + + + + + + + + + + +  

- - - - - - - - - - - - - - - - - - - - - - - - - -  

+ 
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2A m  

hE J( )v t
( )i t

x

Note on displacement current: 
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