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Magnetic Field

Lorentz force Law:

In general, (with both E and B present):

F q v B= ×

( )F q E v B= + ×

This experimental 
law defines B.

The units of B
are Webers/m2

or Tesla [T].

εrN NS NN S
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B is the magnetic flux density vector.

Note: Flux lines come out of north poles!

qv



A magnetic field can never give energy to a particle that is moving on a path. 

Magnetic Field (cont.)

3

( ) ( ) drW F dr q v B dr q v B dt
dt

∆ = ⋅ = × ⋅ = × ⋅

( )
zero

0W q v B v dt∆ = × ⋅ =


B
A

C

dr

B

q



( )F q v B= ×

Beam of electrons moving in a circle, due to the
presence of a magnetic field. Purple light is
emitted along the electron path, due to the
electrons colliding with gas molecules in the bulb.

(From Wikipedia)

Magnetic Field (cont.)
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2
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0 0
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=
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( )0 0ˆF qv Bρ= −A stable orbit is a circular path:

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

0q >

x

y

R

qF v



The most general stable path is a helix,
with the helix axis aligned with the magnetic field.

Magnetic Field (cont.)
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There is no force in the axis direction (hence a constant velocity in this direction).

Magnetic field lines thus “guide” charged particles.

F q v B= ×

B



The earth's magnetic field protects us from charged particles from the sun 
(called the solar wind).

Magnetic Field (cont.)
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The particles spiral along the directions of the magnetic field,
and are thus directed towards the poles.



This also explains the auroras seen near the north pole (aurora borealis) 
and the south pole (aurora australis).

Magnetic Field (cont.)
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The particles from the sun that reach the earth are directed towards the poles.



Magnetic Gauss Law

Magnetic pole (not possible) !

ˆ 0
S

B n dS⋅ =∫

No net magnetic flux out!
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Note: Magnetic flux lines come out of a 
north pole and go into a south pole.

S  (closed surface)

N

Bx

y

z

N

S

S



Magnetic Gauss Law: Differential Form

ˆ 0
S

B n dS⋅ =∫

0B∇ ⋅ =

From the definition of divergence we then have

0

1 ˆlim
V

S

B B n dS
V∆ →

∇ ⋅ ≡ ⋅
∆ ∫

Hence
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Ampere’s Law

[ ]

0

7
0

ˆ
2

4 10 H/m

IB φ µ
πρ

µ π −

 
=  

 
= × (This is an exact value:

please see next slide.)

Experimental law:

10

Iron filings

I

x

y

z

Infinite wire with a DC current



Ampere’s Law (cont.)

Note: The definition of the Amp* is as follows:

[ ]
[ ]

72 10 T

at 1 m

Bφ

ρ

−= ×

=

02
IBφ µ
πρ

 
=  

 

1 [A] current produces:

Hence

[ ]7
0 4 10 H/mµ π −= ×

[ ] [ ]
[ ]( )

7
0

1 A
2 10 T

2 1 m
µ

π
−× =

so
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* This is actually the 
definition before May 20, 
2019. Please see Notes 3 
for more discussion of this.



Ampere’s Law (cont.)

0
ˆ

2
IB φ µ
πρ

 
=  
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Iron filings

I

x

y

z
Infinite wire with a DC current

Note:
There is a “right-hand rule” for predicting the 
direction of the magnetic field from a wire.

(The thumb is in the direction of the current, and 
the fingers are in the direction of the field.)



Ampere’s Law (cont.)
Define:

0

1H B
µ

≡

[ ]A/mˆ
2

IH φ
πρ

 
=  

 

The units of H are [A/m].

H is called the “magnetic field”.

(for single infinite wire)

0B Hµ=
Hence
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(This is the definition of H in free space.)



Ampere’s Law (cont.)

( ) ( )

( )

2

0
2

0

ˆ ˆ ˆ ˆ

2

2
2 2

C C

C

H dr H d d z dz

H d

I d

I Id

I

φ

φ

π

π

φ φ ρ φ ρ ρ

ρ φ

ρ φ
πρ

φ π
π π

⋅ = ⋅ + +

=

 
=  

 

= =

=

∫ ∫

∫

∫

∫

 



A current (wire) is inside a closed path.
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We integrate counterclockwise.

Wire inside path

x

y

C

I

Next, consider an infinite wire inside of an arbitrary closed path.

Observation: 
The answer does not depend on the 

shape of the path!



0

0 2
0

C

IH dr dφ
π

⋅ =

=

∫ ∫

A current (wire) is outside a closed path.

Ampere’s Law (cont.)
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Note: 
The angle φ smoothly goes from zero 

back to zero as we go around the path, 
starting on the x axis.

Wire outside path

x

y

I

C

Next, consider an infinite wire outside of an arbitrary closed path.

Observation: 
The answer does not depend on the 

shape of the path!



Hence
encl

C

H dr I⋅ =∫

Although the law was derived for an infinite 
vertical wire of current, the assumption is 

made that it holds for any current.
This is now an experimental law. 

Ampere’s Law (DC currents)

Ampere’s Law (cont.)
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Note:
The same DC current Iencl goes through any surface that is attached to C

(This follows from the KCL law.)

C

enclI



encl
C

H dr I⋅ =∫

“Right-Hand Rule”

Ampere’s Law (cont.)

Right-hand rule for Ampere’s law: 
The fingers of the right hand are in the direction of the path C, and the thumb
gives the reference direction for the current that is enclosed by the path.
(If the contour C goes counterclockwise, then the reference direction for

current is pointing up.)
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C

enclI



encl
C

H dr I⋅ =∫

The direction of the current enclosed is 
chosen by the right-hand rule.

Ampere’s Law Summary

Right-hand rule for Ampere’s law: 

The fingers of the right hand are in the direction of the path C, and the thumb gives the reference
direction for the current that is enclosed by the path.
(If the contour C goes counterclockwise, then the reference direction for current is pointing up.)
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C

enclI

Summary of Ampere’s law:



Amperes’ Law: Differential Form

( )

( )

( )

ˆ

ˆ ˆ

ˆ ˆ

encl
C

encl
S

S S

H dr I

H n dS I

H n dS J n dS

H n S J n S

∆

∆ ∆

⋅ =

∇× ⋅ =

∇× ⋅ = ⋅

∇× ⋅ ∆ ≈ ⋅ ∆

∫

∫

∫ ∫



H J∇× =

(from Stokes’s theorem)

∆S is a small 
planar surface.

Since the unit normal is arbitrary (it could be any of the three unit vectors), we have

( ) ˆ ˆH n J n⇒ ∇ × ⋅ = ⋅
0S∆ →Let
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n̂ is constant

n̂

C

S∆



Maxwell’s Equations (Statics)

H J∇× =

0E∇× =

vD ρ∇ ⋅ =

0B∇ ⋅ =

Electric Gauss law

Magnetic Gauss law

Faraday’s law

Ampere’s law
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Maxwell’s Equations (Dynamics)

DH J
t

∂
∇× = +

∂

BE
t

∂
∇× = −

∂

vD ρ∇ ⋅ =

0B∇ ⋅ =

Electric Gauss law

Magnetic Gauss law

Faraday’s law

Ampere’s law

21

This term is called 
“displacement current”.



Ampere’s Law: Finding H

encl
C

H dr I⋅ =∫

1) The “Amperian path” C must be a closed path.

2) The sign of Iencl is from the right-hand rule.

3) Pick C in the direction of H (to the extent possible).

Rules:
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Note: 
Ampere’s law is only useful when the problem is very symmetric

(there is only one unknown component of magnetic field).



Example

Calculate H

An infinite line current along the z axis 

1) First solve for Hφ .
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( )H H ρ=Note :

“Amperian path”

I

x

y

z

ρ

Cr



Example (cont.)

( ) ( )

( )

2

0

ˆ

2

encl
C

encl
C

H dr I

H d I I

H d I

H I

π

φ

φ

φ ρ φ

ρ φ

ρ π

⋅ =

⋅ = = +

=

=

∫

∫

∫





2
IHφ πρ

=
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“Amperian path”

I

x

y

z

ρ

Cr

Note: 
Whenever we integrate counterclockwise on a circular 

path, the LHS of Ampere’s law will always be the same:

( )LHS 2Hφ πρ=



Example (cont.)

3) Hρ = 0

( )

ˆ 0

2 0
S

B n dS

B hρ πρ

⋅ =

=

∫

Magnetic Gauss law:

0encl
C

H dr I⋅ = =∫
2) Hz = 0

( ) ( ) 0z zH h H h
ρ ∞

− + =

25

0zH
ρ

⇒ =

h

S

I

Hz = 0 at ∞

Hρ dρ cancels

C ρ = ∞

h
ρI



Example (cont.)

[ ]ˆ A/m
2

IH φ
πρ

 
=  
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I

x

y

z

ρ

r

Summary



Example
Coaxial cable

ρ < a 2
2 A/mA

z z
IJ J
aπ

 = =  

b < ρ < c 2
2 2 A/mB

z z
IJ J

c bπ π
−  = =  −

This inner wire is solid.
The outer shield (jacket) of the coax 

has a thickness of t = c – b.

Note: The permittivity of 
the material inside the 

coax does not matter here.

27

DC current

Note:
At DC, the current density inside the conductor is uniform, since the electric field is uniform

(due to the fact that the voltage drop in the z direction is path independent).

x

y

c

a
b

ρ
r

C
c

b

a

I

I

z



Example (cont.)

( )ˆ
encl

C

H d Iφ ρ φ⋅ =∫

encl
C

H dr I⋅ =∫

This formula holds for any radius, 
as long as we get Iencl correct.

ˆH Hφφ=

2
enclIHφ πρ

=

The other components are zero, as in the wire example.
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2

0
enclH d I

π

φρ φ =∫
2 enclH Iφπρ =

x

y

c

a
b

ρ r
C



Example (cont.)

ρ < a

a <ρ < b

( )2 2
2

A
encl z

II J
a

πρ πρ
π

 = =  
 

enclI I= +
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x

y

c

a
b

ρ
r

C

x

y

c

a
b

ρ

rC



Example (cont.)
b <ρ < c

( )
( )

2 2

2 2
2 2

B
encl zI I J b

II b
c b

πρ π

πρ π
π π

= + + −

−
= + + −

−

ρ > c

( ) 0enclI I I= + + − =
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x

y

c

a
b

ρ

r
C

x

y

c

a b

ρ

r

C



Example (cont.)

ρ < a

a <ρ < b

b <ρ < c

ρ > c

Summary

31

2

2
ˆ [A/m]

2
IH

a
ρφ

πρ
 

=  
 

0 [A/m]H =

ˆ [A/m]
2

IH φ
πρ

=

2 2

2 2
ˆ 1 [A/m]

2
I bH

c b
πρ πφ

πρ π π
 −

= − − 

x

y

c

a
b

ρ

Note: 
There is no magnetic field outside of the coax

(a perfect “shielding property”).



Example
Solenoid

Calculate H

( )

encl
C

z encl

H dr I

H h I I nh

⋅ =

⇒ = = +

∫

32

z

n = # turns/meter 

0 rµ µ µ=

I

a

First, find Hz

ρ < a

Hρ dρ cancels

Hz is zero at ∞

hC

∞

z

Note:
We will say more about 

relative permeability later.

zH nI=

Ideal solenoid:

Length → ∞
n→ ∞



Example (cont.)

0
0

encl

z

I
H h

=
=

( ) [ ]A/m ,
0,

zH nI a
a

ρ
ρ

= <

= >

Hence

z enclH h I=

33

0zH =

so

ρ > a

Hz = 0 at ∞

Hρ dρ cancels

z

zH
C

h
∞



Example (cont.)

The other components of the magnetic field are zero:

2) Hρ = 0 from

1) Hφ = 0  since

ˆ 0
S

B n dS⋅ =∫

0enclI =
2 enclH Iφ πρ =

2 0B hρ πρ =

34

C

S



Example (cont.)
Summary

( ) [ ]ˆ A/m ,
0,

H z nI a
a

ρ
ρ

= <

= >

0 ,rB H aµ µ ρ= <

35

Note:
A larger relative permeability will give a 

larger magnetic flux density. This results is 
a stronger magnet, or a larger inductance.

Note:
A right-hand rule can be used to 

determine the direction of the magnetic 
field (the same rule as for a straight wire).

z

n = # turns/meter 

0 rµ µ µ=

I

a



Example

Infinite sheet of current

Calculate H
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[ ]ˆ A/ms szJ z J=

z

x

y

Top view
+ side

- side

x

y



Example (cont.)

( )ˆ xH x H y=

0zH = (superposition with line currents)

(magnetic Gauss Law)0yH =
Also, by symmetry:

( ) ( )x xH y H y− = − +

37

( ) ( )y yH y H y− = − +

( )2 0yH y x z+ ∆ ∆ =

x

y

xH +

xH −



Note: 
There is no contribution from the left and right edges 

(the edges are perpendicular to the field).encl
C

H dr I⋅ =∫
/2

/2

w

x x
front w

H dr H dx H w
−

+⋅ = = −∫ ∫
/2

/2

w

x x
back w

H dr H dx H w−

−

⋅ = =∫ ∫

Example (cont.)
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( )ˆ xH x H y=

- side

+ side
( )xH y+

x

y

w

C



Note: The magnetic field does not depend on y.

1
2

x x sz

x x sz

x sz

H w H w J w
H H J

H J

+ −

+ +

+

− + =

− − =

= −

A/m

A/m

ˆ [ ], 0
2

ˆ [ ], 0
2

sz

sz

JH x y

JH x y

 = − > 
 
 = + < 
 

Example (cont.)

Note:
We can use a right hand-rule to quickly 

determine the direction of the magnetic field:

Put your thumb is in the direction of the 
current, and your fingers will give the overall 

direction of the magnetic field.
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Example

[ ]

[ ]

ˆ A/m

ˆ A/m

bot
s

top
s

IJ z
w

IJ z
w

 =  
 

− =  
 

Find H everywhere

Assume
w >> h

Parallel-plate transmission line

40

(We neglect fringing here.)

z

x

y

h

w

I

I



Example (cont.)

[ ]

[ ]

A/m

A/m

bot
sz

top
sz

IJ
w

IJ
w

 =  
 

− =  
 

Two parallel sheets (plates) of opposite surface current

41

x

y

h



Example (cont.)

bot topH H H= +

42

Magnetic field due to 
bottom plate

Magnetic field due to 
top plate

“bot” “top”

x

y

h



Example (cont.)

ˆ [A/m], 0

0,

IH x y h
w

H

 = − < < 
 

= otherwise

[ ]A/mbot
sz

IJ
w

 =  
 

We then have

Hence

Recall that

ˆ2 , 0
2

0,

bot
szJx y h

H
   

− < <   =    

 otherwise
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Example (cont.)
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We could also apply Ampere’s law directly (without using 
superposition):

encl
C

H dr I⋅ =∫
top

x sz
IH x J x x
w

 ∆ = ∆ = − ∆ 
 

ˆ [A/m], 0IH x y h
w

 = − < < 
 

Hence

x
IH
w

= −

Note: 
It is convenient to put one 
side (top) of the Amperian 
path in the region where 

the magnetic field is zero.

y

x

h

C

0H =

0H =

ˆ xH x H=

∆x



Low Frequency Calculations 

45

At low frequency, the DC formulas should be accurate,
as long as we account for the time variation in the results. 

x

y

i(t)

ρ

z

r

( ) ( )0 cosi t I tω φ= +
0 /c fρ λ<< =

( ) ( ) [ ]ˆ A/m
2
i t

H t φ
πρ

 
≈  

 

Example (line current in time domain)



Low Frequency Calculations (cont.) 
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We can also used the DC formulas in the phasor domain. 

x

y

i(t)

ρ

z

r

( ) ( )0 cosi t I tω φ= +
0 /c fρ λ<< =

[ ]ˆ A/m
2

p
p IH φ

πρ
 

≈  
 

Example (line current in the phasor domain)

0 ( )p jI I e φ= phasor current

(phasor H field)



Low Frequency Calculations (cont.) 
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ˆ
2

p
p IH φ

πρ
 

≈  
 

( ) ( ) ( )

( )( )

( )

0

0

1ˆ ˆRe Re Re
2 2

1ˆ Re
2

1ˆ cos
2

p
p j t j t p j t

j j t

IH t H e e I e

I e e

I t

ω ω ω

φ ω

φ φ
πρ πρ

φ
πρ

φ ω φ
πρ

    
= ≈ =    

   
 

=  
 
 

= + 
 

Example (cont.)

Converting from phasor domain to the time domain:

(phasor H field)

( ) ( )ˆ [A/m]
2
i t

H t φ
πρ

 
≈  

 

Hence
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