ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson
 Dept. of ECE

Notes 3
 Current

Notes prepared by the EM Group University of Houston

Current

Current is the flow of charge: the unit is the ampere (amp).

$$
1 \mathrm{amp} \equiv 1[\mathrm{C} / \mathrm{s}]
$$

Convention (Ben Franklin): Current flows in

Ampere the direction that positive charges move in.

Current flows from left to right.

Current (cont.)

History of the Ampere

* Before May 20, 2019:
> The amp was defined first, from the force between two parallel wires.
> The coulomb was then defined from the amount of charge flowing in one second.

Ampere
$1 \mathrm{amp} \equiv 1[\mathrm{C} / \mathrm{s}]$

* After May 20, 2019:
> The coulomb was defined first.
$>$ The amp was then defined from the flow rate of one coulomb per second.

Current (cont.)

Previous definition of Amp (before May 20, 2019):

From later in the semester: $\quad F_{x 2}=\frac{I^{2} \mu_{0}}{2 \pi d} \quad \mu_{0}=4 \pi \times 10^{-7} \quad[\mathrm{H} / \mathrm{m}]$

Definition of $I=1$ Amp:

$$
F_{x 2}=2 \times 10^{-7} \quad[\mathrm{~N} / \mathrm{m}] \text { when } d=1 \quad[\mathrm{~m}]
$$

Note: $\mu_{0}=$ permeability of free space.

Present definition of Amp (after May 20, 2019):

$$
1 \mathrm{amp} \equiv 1[\mathrm{C} / \mathrm{s}]
$$

Present definition of coulomb:

$$
\text { Proton: } \begin{array}{rl}
q=e & e 1.602176634 \times 10^{-19}[\mathrm{C}] \\
& \uparrow \text { Definition }
\end{array} \quad \text { Exact defined value }
$$

(derivation omitted)

$$
\mu_{0} \doteq 12.5663706212 \times 10^{-7}[\mathrm{~A} / \mathrm{m}]
$$

(no longer an exact value)

Note: $4 \pi \doteq 12.566370614$

Note:
Although the values of both ε_{0} and μ_{0} changed in 2019, the speed of light did not. It is still defined the way it was in 1983: $c \equiv 2.99792458 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$

Current (cont.)

Postulate: Positive charges moving one way is equivalent to negative charges moving the other way (in terms of most measurable physical electromagnetic effects).

Flow rate is 1 [C] per second

This is equivalent to:
Flow rate is 1 [C] per second

In both cases:

Current flows from right to left.

Current (cont.)

Sign convention: A positive current flowing one way is equivalent to a negative current flowing the other way.

Flow rate is 1 [C] per second

Note:

The blue arrow is called the reference direction arrow. It tells us the direction we measure the current in.

It is very useful in circuit theory to assume reference directions and allow for negative current.

Current (cont.)

Mathematical definition of current

$\Delta Q=$ amount of charge (positive or negative) that crosses the plane in the direction of the reference arrow in time Δt.

$$
I=\frac{\Delta Q}{\Delta t}
$$

More generally, $\quad i(t)=\frac{d Q}{d t}$

$$
i(t)=10 \sqrt{2} \cos (2 \pi 60 t)[\mathrm{A}]
$$

Find the charge $Q(t)$ that crosses the dashed line going from left to right in the time interval $(0, t)[\mathrm{s}]$.

$$
\begin{aligned}
i(t)=\frac{d Q}{d t} \longmapsto Q(t) & =\int i(t) d t+C_{1} \\
& =\int_{0}^{t} i(t) d t+C_{2} \quad(Q(0)=0) \\
& =\int_{0}^{t} i(t) d t
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
Q(t) & =\int_{0}^{t} i(t) d t \\
& =\int_{0}^{t} 10 \sqrt{2} \cos (2 \pi 60 t) d t \\
& =10 \sqrt{2}\left[\frac{1}{2 \pi 60} \sin (2 \pi 60 t)\right]_{0}^{t}
\end{aligned}
$$

$$
Q(t)=\frac{10 \sqrt{2}}{120 \pi} \sin (2 \pi 60 t) \quad[\mathrm{C}]
$$

Note on Vector Notation

Review of vector notation:
$\underline{J}:$ vector
J or $|\underline{J}|:$ magnitude of \underline{J} vector
$J_{x}: x$ component of \underline{J} vector

$$
\begin{gathered}
\underline{J}=\underline{\hat{x}} J_{x}+\underline{\hat{y}} J_{y}+\underline{\hat{z}} J_{z} \\
\underline{J}=\underline{\hat{J}}|\underline{J}|
\end{gathered}
$$

Note: For complex vectors we have

$$
|\underline{J}| \equiv \sqrt{\underline{J} \cdot \underline{J}}=\sqrt{J_{x}^{2}+J_{y}^{2}+J_{z}^{2}}
$$

$$
|\underline{\mid}| \equiv \sqrt{\underline{J} \cdot \underline{J}^{n}}=\sqrt{\left|\left|\left.\right|_{x}\right|^{2}+\left|J_{y}\right|^{2}+\left|J_{z}\right|^{2}\right.}
$$

Current Density Vector \underline{J}

Consider a general "cloud" of charge density, where the charge density as well as the velocity of the charges may be different at each point.

The current-density vector points in the direction of current flow (the direction of positive charge motion).

Current Density Vector (cont.)

The magnitude of the current-density vector \underline{J} tells us the current density (current per square meter) that is crossing a small surface that is perpendicular to the current-density vector.

$I=$ the current crossing the surface ΔS in the direction of the velocity vector.

$$
J=|\underline{J}| \equiv \frac{I}{\Delta S}\left[\mathrm{~A} / \mathrm{m}^{2}\right] \quad \text { Hence } \quad \underline{J} \equiv\left(\frac{I}{\Delta S}\right) \underline{\hat{v}} \quad\left[\mathrm{~A} / \mathrm{m}^{2}\right]
$$

Current Density Vector (cont.)

Consider a small tube of moving charges inside the cloud:

Tube

Current Density Vector (cont.)

$\Delta L=$ distance traveled by charges in time Δt.

$$
\begin{aligned}
J=\frac{I}{\Delta S}= & \frac{\Delta Q / \Delta t}{\Delta S}=\frac{(\Delta Q / \Delta t) \Delta L}{\Delta S \Delta L}=\left(\frac{\Delta Q}{\Delta V}\right)\left(\frac{\Delta L}{\Delta t}\right) \\
& \text { or } \quad J=\rho_{v} v \quad \text { so } \quad \underline{J}=J \underline{\hat{v}}=\left(\rho_{v} v\right) \underline{\hat{v}}
\end{aligned}
$$

Hence $\quad \underline{J}=\rho_{v} \underline{v}$

Current Density Vector (cont.)

Summary

$$
\underline{J} \equiv\left(\frac{I}{\Delta S}\right) \underline{\hat{v}} \quad\left[\mathrm{~A} / \mathrm{m}^{2}\right] \quad \text { Definition of } \underline{J}
$$

$$
\underline{J}=\rho_{v} \underline{v} \quad \text { Charge-current equation }
$$

Current Crossing a Surface

Note:

The surface ΔS does not have to be perpendicular to the current density vector.

$$
\begin{aligned}
& \Delta I=J(\Delta S \cos \theta)=(J \cos \theta) \Delta S=(\underline{J} \cdot \underline{\hat{n}}) \Delta S \\
& \underline{J} \cdot \underline{\hat{n}}=|\underline{J}||\underline{\hat{n}}| \cos \theta=|\underline{J}| \cos \theta=J \cos \theta
\end{aligned}
$$

This is the current crossing the surface ΔS in the direction of the unit normal.

Current Crossing Surface

$$
\Delta I=(\underline{J} \cdot \underline{\hat{h}}) \Delta S
$$

Integrating over a surface,

$$
I=\int_{S} \underline{J} \cdot \underline{\hat{n}} d S
$$

Note:

The direction of the unit normal vector determines whether the current is measured going in or out.

Example

$$
\underline{v}=\underline{\hat{z}}\left(1.0 \times 10^{-4}\right)[\mathrm{m} / \mathrm{s}]
$$

Cloud of electrons

$$
N_{e}=8.47 \times 10^{28}\left[\text { electrons } / \mathrm{m}^{3}\right]
$$

(a) Find: current density vector inside the wire

$$
\begin{gathered}
\underline{J}=\rho_{v} \underline{v} \quad \begin{array}{l}
\text { Notes: } \\
\text { 1) There are } 8.47 \times 10^{28} \text { atoms } / \mathrm{m}^{3} . \\
\text { 2) There is one electron/atom in the conduction band. }
\end{array} \\
\rho_{v}=N_{e} q_{e}=\left(8.47 \times 10^{28}\left[\text { electrons } / \mathrm{m}^{3}\right]\right)\left(-1.602 \times 10^{-19}[\text { C/electron }]\right)=-1.36 \times 10^{10}\left[\mathrm{C} / \mathrm{m}^{3}\right] \\
\underline{J}=\left(-1.36 \times 10^{10}\right)\left(\underline{\hat{z}}\left(1.0 \times 10^{-4}\right)\right) \\
\text { Hence } \underline{J}=\underline{\hat{z}}\left(-1.36 \times 10^{6}\right)\left[\mathrm{A} / \mathrm{m}^{2}\right]
\end{gathered}
$$

The cloud of electrons is inside of a copper wire.

Example (cont.)

(b) Find: current I in the wire for the given reference direction

$$
\underline{J}=\underline{\hat{a}}\left(-1.36 \times 10^{6}\right)\left[\mathrm{A} / \mathrm{m}^{2}\right]
$$

Radius $a=1$ [mm] Note: The wire is neutral, but the positive nuclei do not move.

$$
\begin{array}{rlrl}
I & =\int_{S} \underline{J} \cdot \underline{\hat{n}} d S & \\
& =\int_{S}\left(-\underline{\hat{z}} 1.36 \times 10^{6}\right) \cdot \underline{\hat{z}} d S & & =-1.36 \times 10^{6}\left(\pi a^{2}\right) \\
& =\int_{S}-1.36 \times 10^{6} d S & & =-1.36 \times 10^{6}\left(\pi(0.001)^{2}\right) \\
& =-1.36 \times 10^{6}\left(\pi a^{2}\right) & I=-4.26[\mathrm{~A}]
\end{array}
$$

Example (cont.)

Properties of copper (Cu)

Using knowledge of chemistry, calculate the value of N_{e} (that is used in the previous example).

Density of Cu: $8.94\left[\mathrm{~g} / \mathrm{cm}^{3}\right]$
Atomic weight of $\mathrm{Cu}: 63.546$ (atomic number is 29 , but this is not needed)
Avogadro's constant: $6.0221417930 \times 10^{23}$ atoms $/ \mathrm{mol}$
$1 \mathrm{~mol}=$ amount of material in grams equal to the atomic weight of atom
1 electron per atom in the conduction band ($N_{e}=$ atoms $/ \mathrm{m}^{3}$)

$$
\begin{aligned}
& \text { Atomic weight } \Rightarrow 63.546[\mathrm{~g} / \mathrm{mol}] \Rightarrow 63.546 \times 10^{-3}[\mathrm{~kg} / \mathrm{mol}] \\
& N_{e}=\left(8.94 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]\right)\left(\frac{1}{63.546 \times 10^{-3}}[\mathrm{~mol} / \mathrm{kg}]\right)\left(6.0221417930 \times 10^{23}[\text { atoms } / \mathrm{mol}]\right) \\
&=8.47 \times 10^{28}\left[\text { atoms } / \mathrm{m}^{3}\right] \\
&=8.47 \times 10^{28}\left[\text { electrons } / \mathrm{m}^{3}\right] \quad N_{e}=8.47 \times 10^{28}\left[\text { electrons } / \mathrm{m}^{3}\right]
\end{aligned}
$$

Example

$$
\underline{J}=\underline{\hat{x}}\left(3 x^{2} y\right)+\underline{\hat{y}}\left(3 z^{3} y^{2}\right)+\underline{\hat{\hat{z}}}(3 x y)\left[\mathrm{A} / \mathrm{m}^{2}\right]
$$

Find the current I crossing the surface S in the upward direction.

$$
I=\int_{S}(\underline{J} \cdot \underline{\hat{n}}) d S=\int_{S}(\underline{J} \cdot \underline{\hat{z}}) d S=\int_{S} 3 x y d S
$$

Example (cont.)

$$
\begin{aligned}
I & =\int_{S} 3 x y d S \\
& =\int_{0}^{1} \int_{0}^{1} 3 x y d x d y \\
& =3 \int_{0}^{1} x d x \int_{0}^{1} y d y \\
& =3\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \\
& =\frac{3}{4}
\end{aligned}
$$

Note:

The integrand is separable, and the limits of integration are fixed numbers. Hence, we can split this into a product of two onedimensional integrals.

$$
I=0.75 \text { [A] }
$$

Example

$$
\underline{J}=\underline{\hat{x}}\left(3 x^{2} y\right)+\underline{\hat{y}}\left(3 z^{3} y^{2}\right)+\underline{\hat{\hat{z}}}(3 x y)\left[\mathrm{A} / \mathrm{m}^{2}\right]
$$

Find the current I crossing the surface S in the upward direction.

$$
I=\int_{S}(\underline{J} \cdot \underline{\hat{n}}) d S=\int_{S}(\underline{J} \cdot \underline{\hat{z}}) d S=\int_{S} 3 x y d S
$$

$$
\begin{aligned}
I & =\int_{S} 3 x y d S \\
& =\int_{0}^{1}\left(\int_{0}^{y(x)} 3 x y d y\right) d x \\
& =\int_{0}^{1} 3 x\left(\int_{0}^{y(x)} y d y\right) d x \\
& =\int_{0}^{1} 3 x\left(\frac{1}{2} y^{2}\right)_{0}^{1-x} d x \\
& =\int_{0}^{1}\left[3 x\left(\frac{1}{2}(1-x)^{2}\right)\right] d x \\
& =\frac{3}{2}\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}+\frac{1}{2} x^{2}\right]_{0}^{1}
\end{aligned}
$$

Note:

The integrand is separable, but the limits of integration are not fixed numbers. Hence, we cannot split this into a product of two one-dimensional integrals.

$$
I=0.125 \text { [A] }
$$

This is a useful concept for thin currents!

Inside the actual conductor:

$$
\underline{J}=\underline{\hat{a}}\left(\frac{I}{w t}\right)\left[\mathrm{A} / \mathrm{m}^{2}\right]
$$

Surface Current (cont.)

Current I_{C} flowing across a path C :

$$
I_{C}=\int_{C} \underline{J}_{s} \cdot \underline{\hat{n}} d l
$$

Note:

For the unit normal pictured above, this will give us the current crossing the curve from left to right.

Example

Find the current I_{C} flowing across the path C (from left to right).
$C=$ straight-line path of length $L=3$ meters, making an angle of 30° from the z axis.

$$
I_{C}=\int_{C} J_{\underline{C}} \cdot \underline{\hat{n}} d l=\left(\underline{J_{s}} \cdot \underline{\hat{n}}\right) \int_{C} d l=\left(\underline{J_{s}} \cdot \underline{\hat{n}}\right) L=(\underline{\hat{z}}(5) \cdot(-\underline{\hat{\hat{x}}}(0.86603)+\underline{\hat{\hat{z}}}(+0.5)))(3)=7.5
$$

Hence, we have: $\quad I_{C}=7.5[\mathrm{~A}]$

