ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes prepared by the EM Group University of Houston

Current

Current is the flow of charge: the unit is the ampere (amp).

$$1 \text{ amp} \equiv 1 \text{ [C/s]}$$

Convention (Ben Franklin): Current flows in the direction that <u>positive</u> charges move in.

Ampere

History of the Ampere

- ✤ Before May 20, 2019:
 - The amp was defined first, from the force between two parallel wires.
 - The coulomb was then defined from the amount of charge flowing in one second.
- ✤ After May 20, 2019:
 - The coulomb was defined first.
 - The amp was then defined from the flow rate of one coulomb per second.

Ampere

 $1 \text{ amp} \equiv 1 \text{ [C/s]}$

Previous definition of Amp (before May 20, 2019):

Note: μ_0 = permeability of free space.

Present definition of Amp (after May 20, 2019):

 $1 \text{ amp} \equiv 1 \text{ [C/s]}$

Present definition of coulomb:

Proton:
$$q = e \equiv 1.602176634 \times 10^{-19} [C] \leftarrow Exact defined value
\uparrow_{Definition}$$

$$\mu_{0} \doteq 12.5663706212 \times 10^{-7} \text{ [A/m]}$$
(derivation omitted) (no longer an exact value) Note:
Note: $4\pi \doteq 12.566370614$
Note: $4\pi \doteq 12.566370614$

$$\mu_{0} \text{ changed in 2019, the speed of light did not. It is still defined the way it was in 1983:}$$
 $c \equiv 2.99792458 \times 10^{8} \text{ [m/s]}$

Postulate: Positive charges moving one way is equivalent to negative charges moving the other way (in terms of most measurable physical electromagnetic effects).

Flow rate is 1 [C] per second

Current flows from right to left.

Sign convention: A positive current flowing one way is equivalent to a <u>negative</u> current flowing the other way.

Note:

The blue arrow is called the *reference direction arrow*. It tells us the direction we measure the current in.

It is very useful in circuit theory to assume *reference directions* and allow for negative current.

Mathematical definition of current

 ΔQ = amount of charge (positive or negative) that crosses the plane in the direction of the reference arrow in time Δt .

$$I = \frac{\Delta Q}{\Delta t} \qquad \text{More generally,} \quad i(t) = \frac{dQ}{dt}$$

Uniform current

Non-uniform current

$$i(t) = 10\sqrt{2}\cos(2\pi 60t) \text{ [A]}$$

Find the charge Q(t) that crosses the dashed line going from left to right in the time interval (0, t) [s].

$$i(t) = \frac{dQ}{dt} \qquad \Longrightarrow \qquad Q(t) = \int i(t) dt + C_1$$
$$= \int_0^t i(t) dt + C_2 \quad (Q(0) = 0)$$
$$= \int_0^t i(t) dt$$

Example (cont.)

$$Q(t) = \int_{0}^{t} i(t) dt$$

= $\int_{0}^{t} 10\sqrt{2} \cos(2\pi 60t) dt$
= $10\sqrt{2} \left[\frac{1}{2\pi 60} \sin(2\pi 60t) \right]_{0}^{t}$

$$Q(t) = \frac{10\sqrt{2}}{120\pi} \sin\left(2\pi 60t\right) \quad [C]$$

Note on Vector Notation

Review of vector notation:

 \underline{J} : vector J or $|\underline{J}|$: magnitude of \underline{J} vector J_x : x component of \underline{J} vector

$$\underline{J} = \hat{\underline{x}} J_x + \hat{\underline{y}} J_y + \hat{\underline{z}} J_z$$

$$\underline{J} = \hat{\underline{J}} |\underline{J}|$$
Note: For complex vectors we have
$$|\underline{J}| = \sqrt{\underline{J} \cdot \underline{J}} = \sqrt{J_x^2 + J_y^2 + J_z^2}$$

$$|\underline{J}| = \sqrt{\underline{J} \cdot \underline{J}^*} = \sqrt{|J_x|^2 + |J_y|^2 + |J_z|^2}$$

Current Density Vector J

Consider a general "cloud" of charge density, where the charge density as well as the velocity of the charges may be different at each point.

The current-density vector points in the direction of current flow (the direction of positive charge motion).

The magnitude of the current-density vector \underline{J} tells us the current density (current per square meter) that is crossing a small surface that is <u>perpendicular</u> to the current-density vector.

I = the current crossing the surface ΔS in the direction of the velocity vector.

$$J = \left| \underline{J} \right| \equiv \frac{I}{\Delta S} [A/m^2]$$
 Hence \underline{J}

$$\underline{J} \equiv \left(\frac{I}{\Delta S}\right) \, \underline{\hat{v}} \quad [A/m^2]$$

Consider a small tube of moving charges inside the cloud:

 ΔL = distance traveled by charges in time Δt .

$$J = \frac{I}{\Delta S} = \frac{\Delta Q / \Delta t}{\Delta S} = \frac{\left(\Delta Q / \Delta t\right) \Delta L}{\Delta S \Delta L} = \left(\frac{\Delta Q}{\Delta V}\right) \left(\frac{\Delta L}{\Delta t}\right)$$

or
$$J = \rho_v v$$
 so $\underline{J} = J \, \underline{\hat{v}} = \left(\rho_v v \, \right) \underline{\hat{v}}$

Hence $\underline{J} = \rho_v \underline{v}$

Summary

 $\underline{J} \equiv \left(\frac{I}{\Delta S}\right) \, \underline{\hat{v}} \quad [A/m^2]$

Definition of
$$\underline{J}$$

 $\underline{J} = \rho_v \underline{v}$

Charge-current equation

Current Crossing a Surface

Note: The surface ΔS does not have to be perpendicular to the current density vector.

$$\Delta I = J \left(\Delta S \cos \theta \right) = \left(J \cos \theta \right) \Delta S = \left(\underline{J} \cdot \underline{\hat{n}} \right) \Delta S$$

$$\boxed{\underline{J} \cdot \underline{\hat{n}}} = |\underline{J}| |\underline{\hat{n}}| \cos \theta = |\underline{J}| \cos \theta = J \cos \theta$$

This is the current crossing the surface ΔS in the direction of the unit normal.

Current Crossing Surface

$$\Delta I = \left(\underline{J} \cdot \underline{\hat{n}}\right) \Delta S$$

Integrating over a surface,

$$I = \int_{S} \underline{J} \cdot \hat{\underline{n}} \, dS$$

$$S \xrightarrow{Note:}$$
The direction of the unit normal vector determines whether the current is measured going in or out.

Example

$$\underline{v} = \underline{\hat{z}} \left(1.0 \times 10^{-4} \right) \, [\text{m/s}]$$

Cloud of electrons $N_e = 8.47 \times 10^{28}$ [electrons / m³] The cloud of electrons is inside of a copper wire.

(a) Find: current density vector inside the wire

$$\underline{J} = \rho_v \underline{v}$$
1) There are 8.47 ×10²⁸ atoms / m³.
2) There is one electron/atom in the conduction band.

 $\rho_{v} = N_{e} q_{e} = \left(8.47 \times 10^{28} \left[\text{electrons} / \text{m}^{3}\right]\right) \left(-1.602 \times 10^{-19} \left[\text{C/electron}\right]\right) = -1.36 \times 10^{10} \left[\text{C/m}^{3}\right]$

$$\underline{J} = \left(-1.36 \times 10^{10}\right) \left(\underline{\hat{z}} \left(1.0 \times 10^{-4}\right)\right)$$

Hence $\underline{J} = \underline{\hat{z}} \left(-1.36 \times 10^6 \right) \left[\text{A/m}^2 \right]$

Example (cont.)

(b) Find: current I in the wire for the given reference direction

$$\underline{J} = \underline{\hat{z}} \left(-1.36 \times 10^6 \right) [\text{A/m}^2]$$

Radius a = 1 [mm] **Note:** The wire is neutral, but the positive nuclei do not move.

$$I = \int_{S} \underline{J} \cdot \underline{\hat{n}} \, dS$$

$$= \int_{S} \left(-\frac{\hat{z}}{2} \, 1.36 \times 10^{6} \right) \cdot \underline{\hat{z}} \, dS$$

$$I = -1.36 \times 10^{6} \left(\pi a^{2} \right)$$

$$= -1.36 \times 10^{6} \left(\pi a^{2} \right)$$

$$I = -4.26 \, [A]$$

Example (cont.)

Properties of copper (Cu)

Using knowledge of chemistry, calculate the value of N_e (that is used in the previous example).

Density of Cu: 8.94 [g/cm³]

Atomic weight of Cu: 63.546 (atomic number is 29, but this is not needed)

Avogadro's constant: 6.0221417930×10²³ atoms/mol

1 mol = amount of material in grams equal to the atomic weight of atom

1 electron per atom in the conduction band ($N_e = \text{atoms/m}^3$)

Atomic weight $\Rightarrow 63.546 [g/mol] \Rightarrow 63.546 \times 10^{-3} [kg/mol]$

$$N_{e} = (8.94 \times 10^{3} [\text{kg} / \text{m}^{3}]) \left(\frac{1}{63.546 \times 10^{-3}} [\text{mol/kg}]\right) (6.0221417930 \times 10^{23} [\text{atoms/mol}])$$

= 8.47 × 10²⁸ [atoms/m³]
= 8.47 × 10²⁸ [electrons/m³] $N_{e} = 8.47 \times 10^{28} [\text{electrons/m}^{3}]$

Example

Find the current *I* crossing the surface *S* in the *upward* direction.

$$\hat{\underline{n}} = \pm \hat{\underline{z}}$$

Example (cont.)

Note:

The integrand is <u>separable</u>, and the limits of integration are <u>fixed</u> numbers. Hence, we can split this into a product of two one-dimensional integrals.

$$I = 0.75 [A]$$

Example

Find the current *I* crossing the surface *S* in the *upward* direction.

$$I = \int_{S} \left(\underline{J} \cdot \underline{\hat{n}} \right) dS = \int_{S} \left(\underline{J} \cdot \underline{\hat{z}} \right) dS = \int_{S} 3xy \, dS$$

 $\hat{n} = +\hat{z}$

Example (cont.)

Note:

The integrand is separable, but the limits of integration are <u>not</u> fixed numbers. Hence, we cannot split this into a product of two one-dimensional integrals.

Surface Current

This is a useful concept for thin currents!

Surface Current (cont.)

Current *I_C* flowing across a path *C*:

$$I_C = \int_C \underline{J}_s \cdot \underline{\hat{n}} \, dl$$

Note: For the unit normal pictured above, this will give us the current crossing the curve from left to right.

Example

Find the current I_C flowing across the path C (from left to right).

C = straight-line path of length L = 3 meters, making an angle of 30° from the *z* axis.

$$I_C = \int_C \underline{J}_s \cdot \underline{\hat{n}} \, dl = \left(\underline{J}_s \cdot \underline{\hat{n}}\right) \int_C dl = \left(\underline{J}_s \cdot \underline{\hat{n}}\right) L = \left(\underline{\hat{z}}\left(5\right) \cdot \left(-\underline{\hat{x}}\left(0.86603\right) + \underline{\hat{z}}\left(+0.5\right)\right)\right) (3) = 7.5$$

Hence, we have: $I_C = 7.5$ [A]