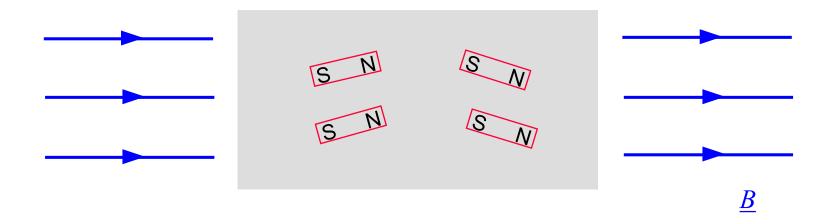
ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 30 Magnetic Materials and Stored Energy

Magnetic Materials



Because of *electron spin*, atoms tend to acts as little current loops, and hence as electromagnetics, or bar magnets.

When a magnetic field is applied, the little atomic magnets tend to line up. This effect is what causes the material to have a <u>relative permeability</u> μ_r .

$$\mu = \mu_0 \mu_r$$

Magnetic Materials (cont.)

 $\mu = \mu_0 \mu_r$

Type of Material	Property
Nonmagnetic	$\mu_r = 1$
Diamagnetic	$\mu_r < 1$
Paramagnetic	$\mu_r > 1$
Ferrimagnetic	$\mu_r >> 1$
Ferromagnetic	$\mu_r >> 1$

Please see the textbooks to learn more about magnetic materials and permeability.

For more information:

http://en.wikipedia.org/wiki/Magnetism

Magnetic Materials

Material	Relative Permeability μ_r
Vacuum	1
Air	1.0000004
Water	0.999992
Copper	0.999994
Aluminum	1.00002
Silver	0.99998
Nickel	600
Iron	5000
Carbon Steel	100
Transformer Steel	2000
Mumetal	50,000
Supermalloy	1,000,000

Note: Values can often vary depending on purity and processing.

http://en.wikipedia.org/wiki/Permeability_(electromagnetism)

Boundary Conditions

(Please see the textbooks for a derivation.)

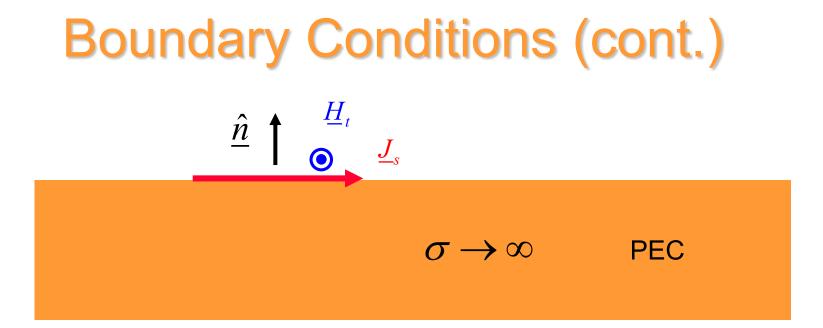


The unit normal vector points towards region 1.

$$\underline{\hat{n}} \times (\underline{H}_{t1} - \underline{H}_{t2}) = \underline{J}_s \qquad B_{n1} = B_{n2}$$

Note: If there is no surface current:

$$\underline{H}_{t1} = \underline{H}_{t2}$$



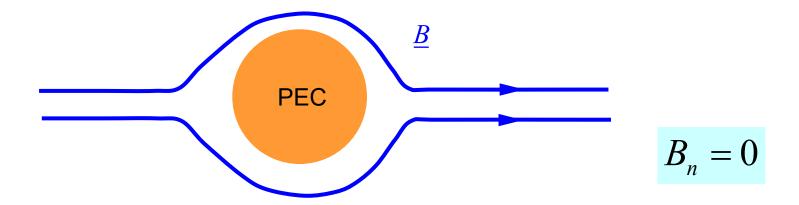
Assume zero magnetic field inside the PEC

$$\underline{\hat{n}} \times \underline{H}_t = \underline{J}_s \qquad B_n = 0$$

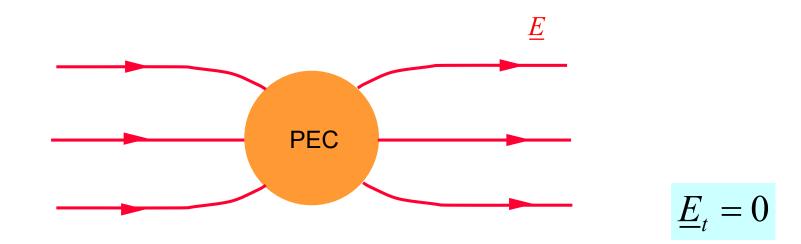
Note:

For a practical conductor, these BCs will be accurate as long as the conductivity is high enough so that the skin depth is small.

Boundary Conditions (cont.)



Magnetic field lines must bend around a perfect electric conductor (PEC). This is the opposite behavior of electric field lines.



Magnetic Stored Energy

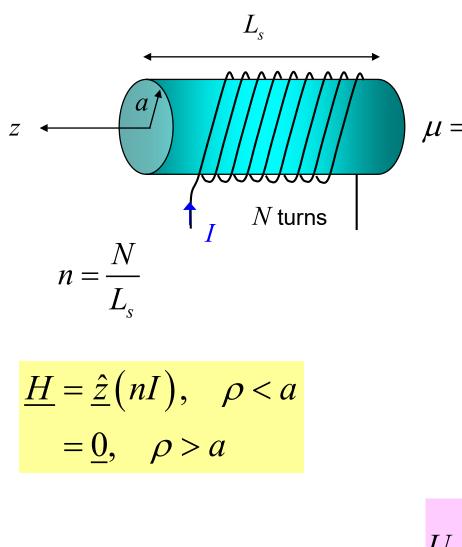
$$U_{H} = \int_{V} \frac{1}{2} \underline{B} \cdot \underline{H} \, dV$$

We also have
$$\underline{B} = \mu \underline{H} = \mu_0 \mu_r \underline{H}$$

Hence we can write

$$U_{H} = \int_{V} \frac{1}{2} \mu_{0} \mu_{r} \left|\underline{H}\right|^{2} dV$$

Example



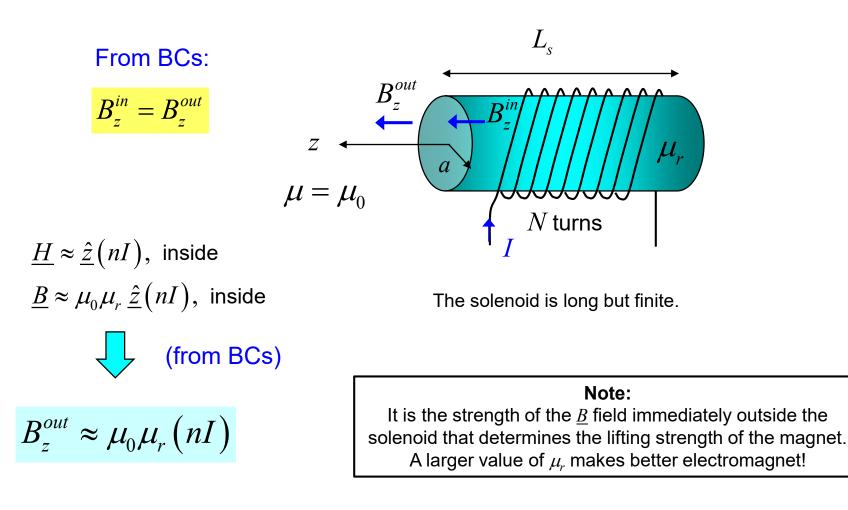
Find U_H inside solenoid

Assume infinite solenoid approximation.

 $\mu = \mu_0 \mu_r$ $U_{H} = \int_{U} \frac{1}{2} \mu_{0} \mu_{r} \left(H_{z}\right)^{2} dV$ $\int \frac{1}{2} \mu_0 \mu_r \left(nI \right)^2 dV$ $= \left(\pi a^2 L_s\right) \left[\frac{1}{2}\mu_0 \mu_r \left(nI\right)^2\right]$ $=\frac{1}{2}\pi a^2 L_s \mu_0 \mu_r I^2 \left(\frac{N}{L}\right)^2$ $U_{H} = \frac{1}{2} \mu_{0} \mu_{r} \pi a^{2} \left(\frac{N^{2}}{L_{c}}\right) I^{2} \quad [J]$

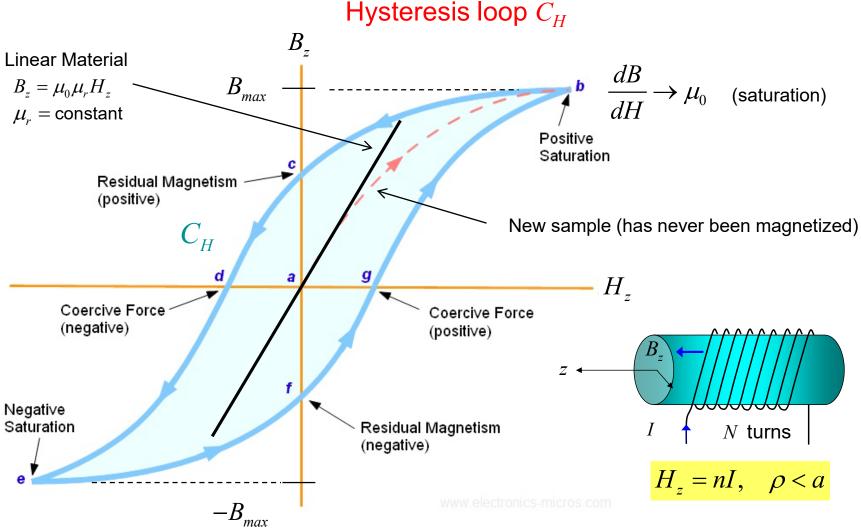
Finite-Length Solenoid

In a practical <u>finite-length</u> solenoid, the magnetic flux density immediately outside the solenoid is usually what is important.

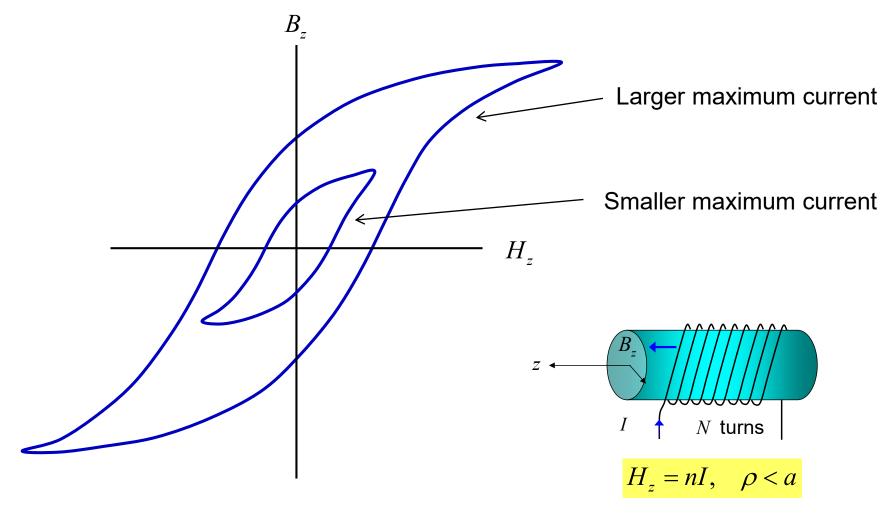


Hysteresis

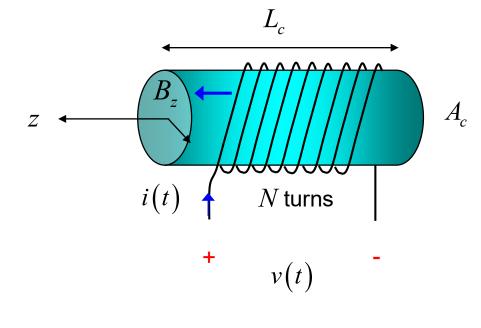
Hysteresis is a nonlinear effect that many magnetic materials exhibit.



Note: The size of the hysteresis loop depends on the maximum current in the coil.

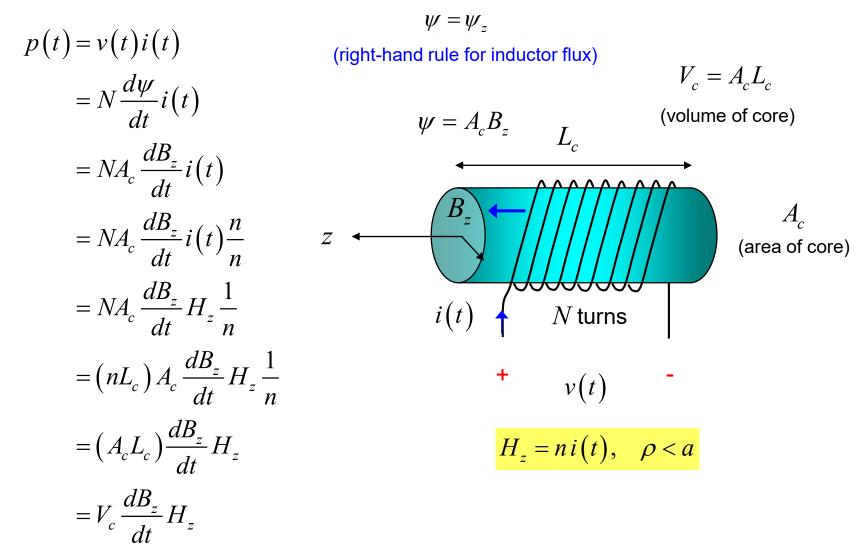


Hysteresis causes <u>power loss</u> for an AC magnetic field in a nonlinear material (such as in a transformer core).



f = frequency [Hz]

Power going into coil:

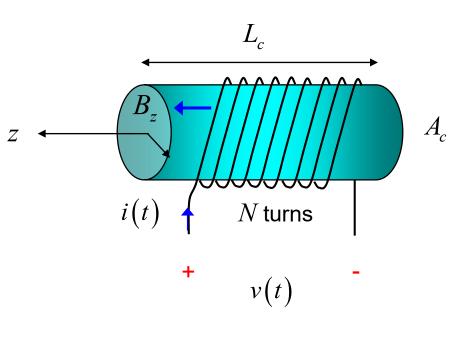


Energy going into the coil in <u>one cycle</u> of the waveform (period *T*):

$$W = \int_{0}^{T} p(t) dt$$

= $V_c \int_{0}^{T} \frac{dB_z}{dt} H_z dt$
= $V_c \int_{C_H} H_z dB_z$
= $V_c \int_{-B_{max}}^{B_{max}} H_z^{right} dB_z + V_c \int_{B_{max}}^{-B_{max}} H_z^{left} dB_z$
= $V_c \int_{-B_{max}}^{B_{max}} (H_z^{right} - H_z^{left}) dB_z$

 $c^{\mathbf{h}}$



Note: $\int_{a}^{b} (y_{2}(x) - y_{1}(x)) dx = \text{area between curves}$

 A_h = area inside hysteresis curve

The energy is not zero (there is loss)!

The average power loss (in watts) due to hysteresis is:

$$P_{hys}^{ave} = \frac{W}{T} = Wf = \left(V_c A_f\right) f$$

We thus have

$$P_{hys}^{ave} = A_h f V_c \quad [W]$$

Note: There would be no hysteresis loss if the core material was <u>linear</u> $(A_h = 0)$.

where

$$A_{h} = \text{area inside hysteresis curve} \left[\text{T A/m} \right]$$
$$f = \text{frequency} \left[\text{Hz} \right]$$
$$V_{c} = \text{volume of core} \left[\text{m}^{3} \right]$$