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Magnetic Materials

Because of electron spin, atoms tend to acts as little current 
loops, and hence as electromagnetics, or bar magnets.

When a magnetic field is applied, the little atomic magnets tend 
to line up. This effect is what causes the material to have a 
relative permeability µr.

0 rµ µ µ=

B
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Magnetic Materials (cont.)
0 rµ µ µ=
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Type of Material Property
Nonmagnetic µr =  1
Diamagnetic µr <  1

Paramagnetic µr >  1
Ferrimagnetic µr >>  1
Ferromagnetic µr >>  1

http://en.wikipedia.org/wiki/Magnetism
For more information:

Please see the textbooks to 
learn more about magnetic 
materials and permeability.



Magnetic Materials
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Material Relative Permeability µr

Vacuum 1
Air 1.0000004

Water 0.999992
Copper 0.999994

Aluminum 1.00002
Silver 0.99998
Nickel 600
Iron 5000

Carbon Steel 100
Transformer Steel 2000

Mumetal 50,000
Supermalloy 1,000,000

Note: Values can often vary depending on purity and processing.
http://en.wikipedia.org/wiki/Permeability_(electromagnetism)



Boundary Conditions

( )1 2ˆ t t sn H H J× − = 1 2n nB B=

Note: If there is no surface current: 1 2t tH H=
5

The unit normal vector points towards region 1. 

(Please see the textbooks for a derivation.)

2 0 2rµ µ µ=

1 0 1rµ µ µ=n̂
Region 1
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Boundary Conditions (cont.)

ˆ t sn H J× = 0nB =

Assume zero magnetic field inside the PEC

Note:
For a practical conductor, these BCs will be accurate as long as the conductivity is 

high enough so that the skin depth is small. 
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Boundary Conditions (cont.)

Magnetic field lines must bend around a perfect electric conductor (PEC).

This is the opposite behavior of electric field lines.

0nB =

0tE =
7

PEC
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Magnetic Stored Energy

1
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Hence we can write

We also have
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Find UH  inside solenoid
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Assume infinite solenoid approximation.

0 rµ µ µ=z

sL

N turnsI
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Finite-Length Solenoid
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In a practical finite-length solenoid, the magnetic flux density 
immediately outside the solenoid is usually what is important.

in out
z zB B=

From BCs:

Note:
It is the strength of the B field immediately outside the 

solenoid that determines the lifting strength of the magnet. 
A larger value of µr makes better electromagnet!

The solenoid is long but finite.
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Hysteresis
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Hysteresis is a nonlinear effect that many magnetic materials exhibit.
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dB
dH

µ→

zB

zH

maxB
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New sample (has never been magnetized)

(saturation)

Linear Material
0z r zB Hµ µ=

HC

Hysteresis loop CH
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Hysteresis (cont.)
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,zH nI aρ= <

z

N turns

zB

I

Note: The size of the hysteresis loop depends on the maximum current in the coil.

zH

zB

Larger maximum current

Smaller maximum current



Hysteresis (cont.)
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Hysteresis causes power loss for an AC magnetic field in a nonlinear 
material (such as in a transformer core).

f = frequency [Hz]
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Hysteresis (cont.)
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Power going into coil:
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Hysteresis (cont.)
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c hW V A=

Energy going into the coil in one cycle of the waveform (period T):

Ah = area inside hysteresis curve

( ) ( )( )2 1

b

a

y x y x dx− =∫ area between curves

Note:

The energy is not zero (there is loss)!
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The average power loss (in watts) due to hysteresis is:

( )ave
hys c f

WP Wf V A f
T

= = =

[ ]Wave
hys h cP A f V=

We thus have

Hysteresis (cont.)

where
[ ]

[ ]
3

e T A/m
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area inside hysteresis curv

frequency 

volume of core

Note: 
There would be no 

hysteresis loss if the core 
material was linear (Ah = 0).
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