ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 32 Magnetic Force and Torque

Force on Wire

Force on Wire (cont.)

Force on wire:

$$\underline{F} = \int_{C} I \, \underline{d\ell} \times \underline{B}$$

The contour C is in the direction of the <u>reference direction</u> for the current.

$\begin{array}{c} \hline \bullet \\ C \\ \hline \\ \underline{d\ell} \\ \underline{\ell} \\ \underline{\ell} \\ \underline{\ell} \\ \underline{E} \end{array}$

<u>B</u>

Important Point: There is no <u>net</u> force on a wire due to the magnetic field produced by <u>itself</u>. Therefore, the magnetic field <u>B</u> in the formula is taken as that due to all <u>other</u> currents (or magnets).

Find the force \underline{F}_2 on wire 2

Assume that the wires are long compared to the separation.

Note: The force on wire 2 comes from the magnetic field due to wire 1.

Example (cont.)

The contour C_2 runs from point <u>A</u> to point <u>B</u> (left to right), defined by the current reference direction on wire 2.

Example (cont.)

$$\underline{F}_{2} = \int_{C_{2}} I_{2}\left(\underline{\hat{z}}\,dz\right) \times \left(\mu_{0}\left(-\underline{\hat{y}}\right)\frac{I_{1}}{2\pi h}\right)$$
$$= \frac{I_{1}I_{2}}{2\pi h}\mu_{0}\left(+\underline{\hat{x}}\right)\int_{0}^{L}dz$$
$$\underline{F}_{2} = \underline{\hat{x}}\,\mu_{0}\left(\frac{I_{1}I_{2}}{2\pi h}\right)L \quad [N]$$

The limits are chosen by the direction of path C_2 (the path runs from x = 0 to x = L).

(The force is a repulsive force, assuming that both currents are positive.)

Definition of Amp

Assume
$$I_1 = I_2 = I$$
 $\underline{F}_2 = \hat{\underline{x}} \mu_0 \left(\frac{I^2}{2\pi h} \right) L$ [N]
Note:
 $\underline{F}_1 = -\underline{F}_2$
 x
 I
 \underline{F}_2
 I
 \underline{F}_2
 \underline{I}
 \underline{F}_1
 \underline{I}
 \underline{I}
 \underline{F}_1
 \underline{I}
 \underline{I}
 \underline{I}
 \underline{I}
 \underline{F}_1
 \underline{I}
 $\underline{$

Definition of Amp (prior to May 20, 2019):

$$I = 1.0 \text{ [A]}: \quad F_{lx2} = 2 \times 10^{-7} \text{ [N/m] when } h = 1.0 \text{ [m]}$$
$$F_{lx2} = \text{force per unit length in } x \text{ direction on wire 2}$$

Definition of Amp (cont.)

Force per unit length:

$$F_{x2}^{l} = \mu_0 \left(\frac{I^2}{2\pi h}\right) \text{ [N/m]}$$

From the Amp definition:

$$2 \times 10^{-7} = \mu_0 \left(\frac{(1.0)^2}{2\pi (1.0)} \right)$$

$$\mu_0 = 4\pi \times 10^{-7} [\text{H/m}]$$

An exact constant! (prior to May 20, 2019)

In a power substation, the current in two parallel buses is 1 [kA]. The buses are 1 [m] apart.

What is the force per unit length between the two buses?

Example (cont.)

$$\underline{F}_{2}^{l} = -\underline{\hat{x}} \left(4\pi \times 10^{-7} \right) \left(\frac{\left(1 \times 10^{3} \right)^{2}}{2\pi \left(1.0 \right)} \right)$$

$$\underline{F}_2^l = -\underline{\hat{x}}(0.20) \text{ [N/m]}$$

or

$$\underline{F}_2^l = -\underline{\hat{x}}(0.045) \text{ [lbs/m]}$$

Note: 1 [kG] \rightarrow 9.8 [N] = 2.2 [lbs]

Example

During a lighting strike, the current in two parallel wires inside the wall of a house reaches 10 [kA]. The wires are 1 [cm] apart.

What is the force per unit length between the two wires?

Example (cont.)

$$\underline{F}_{2}^{l} = -\underline{\hat{x}} \left(4\pi \times 10^{-7} \right) \left(\frac{\left(10 \times 10^{3} \right)^{2}}{2\pi \left(0.01 \right)} \right)$$

$$\underline{F}_2^l = -\underline{\hat{x}}(2000) \text{ [N/m]}$$

or

$$\underline{F}_2^l = -\underline{\hat{x}}(449.0) \text{ [lbs/m]}$$

Note: 1 [kG] \rightarrow 9.8 [N] = 2.2 [lbs]

Torque on Current Loop

A planar current loop of wire with an <u>arbitrary shape</u> carries a current *I*.

Define *magnetic dipole moment* of loop:

$$\underline{m} \equiv \underline{\hat{n}} \left(AI \right)$$

Note: There is no net force on the loop if the magnetic field is a constant. But there is a torque.

$$\underline{F} = I\left(\oint_C \underline{d\,\ell}\right) \times \underline{B} = \underline{0}$$

B = magnetic flux density vector (assumed constant over the loop)

Torque vector on loop: $T = m \times B$ (Please see the textbooks for a derivation.)

Note: Put in a factor of *N* for an *N*-turn loop.

DC Motor

A loop rotating in a DC magnetic field is shown below.

$$\underline{T} = \underline{m} \times \underline{B} = \left(\underline{\hat{n}}AI\right) \times \underline{B} = AI\left(\underline{\hat{x}}\cos\phi + \underline{\hat{y}}\sin\phi\right) \times \left(\underline{\hat{x}}B_0\right)$$

 $\underline{T} = -\underline{\hat{z}}(AIB_0)\sin\phi$ The average value is zero!

A *commutator* is needed to reverse the current every 180° and make the torque in same direction.

http://en.wikipedia.org/wiki/DC_motor

The *commutator* reverses the loop current every 180° of rotation. (It keeps the current flowing clockwise in the picture above.)

$$\underline{T} = \underline{\hat{z}} (AIB_0) |\sin \phi|$$

http://en.wikipedia.org/wiki/Commutator_(electric)

DC Motor (cont.)

DC Motor (cont.)

In practice, there are multiple loops and commutator segments. The torque is thus more constant as the armature turns.

http://www.mmsonline.com/columns/gaging-commutators

Example

In a DC motor, the armature consists of N = 10,000 turns (loops) of wire, of length L = 0.1 [m] in length (parallel to the *z* axis). The magnetic flux density produced by the stator is B = 0.5 [T]. The radius of the armature is R = 0.05 [m].

Find the maximum torque on the armature. The current through the motor is 3 [A].

Assume that the magnetic field is constant and perpendicular to the loop axis (i.e., we are at the point of maximum torque in the rotation cycle).

Z

$$\underline{T} = N \left[\underline{m} \times \left(\hat{\underline{x}} B_0 \right) \right]$$

$$\underline{m} = -\hat{\underline{y}} \left(AI \right) N$$

$$A = L \left(2R \right)$$

$$N = 10^4, B_0 = 0.5[T], I = 3 [A], L = 0.1 [m], R = 0.05 [m]$$

$$\underline{B} = \hat{\underline{x}} B_0$$

$$\underline{R} = \hat{\underline{x}} B_0$$

$$\underline{R} = \hat{\underline{x}} B_0$$

$$A = \hat{\underline{x}} B_0$$

Example (cont.)

We then have

Note: The top and bottom parts of the loop do not contribute to the torque.

Force from a Magnet

Assume that most of the stored energy is inside the <u>gap</u> region (where there is air, and $H_x = B_x/\mu$ is the strongest).

$$U_{H} = \frac{1}{2} \int_{V} \underline{B} \cdot \underline{H} \, dV \approx \frac{1}{2\mu_{0}} \int_{V_{gap}} B_{x}^{2} \, dV \approx \frac{1}{2\mu_{0}} \left(Ag\right) B_{x0}^{2} = g\left(\frac{A}{2\mu_{0}} B_{x0}^{2}\right)$$

The magnetic field is assumed to be constant inside the air gap region, since the gap is small.

Principle of "virtual work":

$$dU_{H} = \left(-F_{x}\right)dg$$

SO

Note: The force $-\underline{F}$ is the force we would exert on the block of iron to keep it fixed in position. $U_H = g\left(\frac{A}{2\mu_0}B_{x0}^2\right)$

We then have:

 $F_x = -\frac{A}{2\mu_0}B_{x0}^2$

Force from a Magnet (cont.)

$$\underline{F} = -\underline{\hat{x}}\frac{A}{2\mu_0}B_{x0}^2$$