ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 33 Mutual Inductance

Mutual Inductance

Two coils are in proximity of each other.

Note: Each coil has a set of output terminals, but this is not shown.

Current reference directions and unit normal vectors are defined on both coils.

(The unit normal vectors are each determined from the corresponding current reference directions, by the right-hand rule for inductor flux.)

Reminder:

Right-hand rule for inductor flux: Fingers are in the direction of the current *I* in the coil, and the thumb gives the direction of the unit normal (the reference direction for the flux).

Mutual Inductance (cont.)

3

Hence, $M_{21} < 0$.

Mutual Inductance (cont.)

In general, if coil 1 has multiple turns:

$$M_{12} \equiv \frac{\Lambda_{12}}{I_2} = \frac{N_1 \psi_{12}}{I_2}$$

Note: For the figure shown, $\psi_{12} < 0$ if $I_2 > 0$. Hence, $M_{12} < 0$.

Mutual Inductance (cont.)

A general property (proof omitted) is that both mutual inductance components are always equal:

$$M_{12} = M_{21} = M$$

Note: The units of *M* are Henrys.

Circuit Law for Coupled Coils

Example

Summary:

$$M_{12} = N_1 \mu_0 \mu_r \left(\frac{N_2}{L_s}\right) \pi R_1^2$$
$$M_{21} = N_2 \mu_0 \mu_r \left(\frac{N_1}{L_s}\right) \pi R_1^2$$

$$M_{12} = M_{21} = M = \mu_0 \mu_r \left(\frac{\pi R_1^2}{L_s}\right) (N_1 N_2)$$
 [H]

Dot Convention

The dot convention allows us to use mutual inductance M without having to visually inspect how the coils are wound.

$$v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \qquad v_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

The dots tell us where to put the <u>positive</u> sign for the voltage on one coil, and where the current <u>enters</u> the other coil.

Note: We also label voltages and currents with the passive sign convention, to be consistent with the self inductance.

Dot Convention (cont.)

Here is one possible dot arrangement:

Dot Convention (cont.)

Here is another possible dot arrangement:

Note: The *M* here is the negative of the *M* on the last slide (if the coils are the same).

We can always choose the dots to make *M* positive if we wish.

$$v_1 = L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} \qquad v_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

Example

Write down KVL phasor-domain mesh-current equations to describe this circuit.

 $V_1 = j\omega L_1 I_1 + j\omega M I_2$ $V_2 = j\omega L_2 I_2 + j\omega M I_1$

$$-V + \left[j\omega L_{1}I_{1} + j\omega MI_{2}\right] + R_{1}\left(I_{1} - I_{2}\right) + \left(\frac{1}{j\omega C_{1}}\right)I_{1} = 0$$
$$R_{1}\left(I_{2} - I_{1}\right) + R_{2}I_{2} + \left[j\omega L_{2}I_{2} + j\omega MI_{1}\right] + \left(\frac{1}{j\omega C_{2}}\right)I_{2} = 0$$