ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson
Dept. of ECE

Notes 34
 Magnetic Circuits

Magnetic Circuits

Consider a transformer type of core:

$A=$ cross-sectional area of core
$L=$ length of core (going all the way around)

Magnetic Circuits (cont.)

Apply Ampere's law:
$\oint_{C} \underline{H} \cdot d \underline{r}=I_{\text {encl }}=+N I$

Assume that the magnetic flux in the core is constant.

This assumption will be accurate if the core has a high permeability (not much flux leakage from the core).

Magnetic Circuits (cont.)

Assuming ψ is constant, the magnetic flux in the core is then:

$$
\psi=B A=\left(\mu_{0} \mu_{r} H\right) A=\mu_{0} \mu_{r}(H L) \frac{A}{L}=H L\left(\frac{\mu_{0} \mu_{r} A}{L}\right)=N I\left(\frac{\mu_{0} \mu_{r} A}{L}\right)
$$

Recall: $H L=N I$

Hence we have

$$
\psi=\frac{N I}{\left(\frac{L}{\mu_{0} \mu_{r} A}\right)}
$$

Magnetic Circuits (cont.)

Define the reluctance ("magnetic resistance") of the core:

$$
R_{m} \equiv \frac{L}{\mu_{0} \mu_{r} A}
$$

We then have:

$$
\psi=\frac{V_{m}^{s}}{R_{m}}
$$

where

$$
V_{m}^{s} \equiv N I
$$

"magnetic voltage source"

Magnetic Circuits (cont.)

Circuit model of the system ("magnetic circuit"):

Magnetic Circuits (cont.)

Circuit analogy for the system:

$$
\begin{aligned}
& I_{m} \equiv \psi \\
& V_{m}^{s} \equiv N I \\
& R_{m} \equiv \frac{L}{\mu_{0} \mu_{r} A}
\end{aligned}
$$

Magnetic Circuits (cont.)

Using a magnetic circuit, we can calculate inductance or mutual inductance (for a pair of coils).

Example (Find coil inductance $L_{\text {coil }}$):

$$
\begin{array}{r}
L_{\mathrm{coil}}=\frac{N \psi}{I} \\
\psi=I_{m}
\end{array}
$$

$L=$ core length
Hence,

$$
L_{\text {coil }}=\frac{N}{I}\left(\frac{V_{m}}{R_{m}}\right)=\frac{N}{I}\left(\frac{N I}{R_{m}}\right)
$$

so

$$
L_{\text {coil }}=\frac{N^{2}}{R_{m}}
$$

Magnetic Circuits (cont.)

The concept of reluctance allows us to easily solve more complicated magnetic circuit problems.
$L_{1} \quad A=$ cross - sectional area of core

Square - shaped core

Each segment of the structure is a reluctance.

Magnetic Circuits (cont.)

This is the circuit model of the previous structure.

Note: $R_{m g} \gg\left(R_{m 1}, R_{m 2}\right)$ if $\mu_{r} \gg 1$ (Air gaps in a core choke off the magnetic flux!)

Magnetic Circuits (cont.)

Another example is shown here.

Each segment of the structure is a reluctance.
Note: The cross sectional area A is different for the middle segments.
$R_{m 2}=\frac{L_{2}}{\mu_{0} \mu_{r} A_{2}}$
$R_{m g}=\frac{L_{g}}{\mu_{0} A_{2}}$

Magnetic Circuits (cont.)
This is the circuit model of the previous structure.
Note that meshed currents have been defined.

We can solve this using a mesh-current approach (details omitted).

Magnetic Circuits (cont.)

Once the fluxes ψ_{1} and ψ_{2} are known (from the mesh-current analysis), we can find the value of B and H in any part of the structure.

Example: $|\underline{H}|$ inside air gap: $\quad \psi_{g}=\psi_{1}-\psi_{2}, \quad B_{g}=\frac{\psi_{g}}{A_{2}}, \quad H_{g}=\frac{B_{g}}{\mu_{0}}$

Magnetic Circuits (cont.)

Note on Modeling

We have a perfect duality in the modeling equations.
(This is why the method works for any structure.)

* The magnetic flux going out of a junction must be zero (magnetic Gauss law).
* Around any loop, we have Ampere's law.

* The current going out of a junction must be zero (KCL).
* Around any loop, we have the KVL law.

