ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 4
 Electric Field and Voltage

Notes prepared by the EM Group University of Houston

Electric Field

$$
\underline{F}=q \underline{E}
$$

The electric-field vector is the force vector for a unit charge.

Units of electric field: [V / m]

Electric Field (cont.)

Note: The electric-field vector may be non-uniform.

Point charge q in free space:

$$
\underline{E}=\underline{\hat{r}}\left(\frac{q}{4 \pi \varepsilon_{0} r^{2}}\right)
$$

(nonuniform)

Voltage Drop

The voltage drop between two points is now defined.

Volta

Notation:

$$
\int_{\underline{A}}^{B} \underline{E} \cdot d \underline{r}=\int_{C} \underline{E} \cdot d \underline{r}
$$

$$
C=\text { path from } \underline{A} \text { to } \underline{B} .
$$

Comment: In statics, the line integral is independent of the shape of the path.
(This will be proven later after we talk about the curl.)

Voltage Drop

Here all of the mathematical terms are defined.

Voltage Drop (Cont.)

We now explore the physical interpretation of voltage drop.

A test charge is moved from point \underline{A} to point \underline{B} at a constant speed (no increase in kinetic energy).

$$
\underline{F}^{E}=q \underline{E} \quad \underline{F}^{e x t}=-\underline{F}^{E}=-q \underline{E}
$$

Voltage Drop (cont.)

Define:
$W^{e x t}=$ work done by observer in moving the charge.

$$
W^{e x t}=\int_{\underline{A}}^{\underline{B}} \underline{F}^{e x t} \cdot d \underline{r}=\int_{\underline{A}}^{\underline{B}}-q \underline{E} \cdot d \underline{r}=-q \int_{\underline{A}}^{\underline{B}} \underline{E} \cdot d \underline{r}
$$

Hence $W^{e x t}=-q V_{A B}$

Voltage Drop (cont.)

From the last slide: $W^{e x t}=-q V_{A B}$

But we also have $W^{\text {ext }}=\operatorname{PE}(\underline{B})-\operatorname{PE}(\underline{A})$
(Remember: no change in kinetic energy.)

SO

$$
-q V_{A B}=\operatorname{PE}(\underline{B})-\operatorname{PE}(\underline{A})
$$

or

$$
V_{A B}=\frac{1}{q}[\operatorname{PE}(\underline{A})-\operatorname{PE}(\underline{B})]
$$

Physical Interpretation of Voltage

Result:

$$
V_{A B}=\operatorname{PE}(\underline{A})-\operatorname{PE}(\underline{B}) \quad(q=1)
$$

Conclusion:
The voltage drop is equal to the change in potential energy of a unit test charge.

The voltage at a point can be thought of as the potential energy of a unit test charge at that point.

Physical Interpretation of Voltage

Example:

Point \underline{A} is at a higher voltage, and hence a higher potential energy, than point \underline{B}.

The charge is at a higher potential energy when near the top plate!

Comments

* The electric field vector points from positive charges to negative charges.
* Positive charges are at a higher voltage, and negative charges are at a lower voltage.
* The electric field points from higher voltage to lower voltage.

Review of Doing Line Integrals

$$
V_{A B}=\int_{\underline{A}}^{B} \underline{E} \cdot d \underline{r}
$$

In rectangular coordinates,

$$
\begin{gathered}
\underline{E}=\underline{\hat{x}} E_{x}+\underline{\hat{y}} E_{y}+\underline{\hat{z}} E_{z} \\
\underline{r}=\underline{\hat{x}} x+\underline{\hat{y}} y+\underline{\hat{\hat{z}}} z \Rightarrow d \underline{r}=\underline{\hat{x}} d x+\underline{\hat{y}} d y+\underline{\hat{z}} d z
\end{gathered}
$$

Hence

$$
V_{A B}=\int_{\underline{A}}^{\underline{B}}\left(E_{x} d x+E_{y} d y+E_{z} d z\right) \quad \begin{gathered}
\text { Note: } \\
\text { The limits are vector points. }
\end{gathered}
$$

so

$$
V_{A B}=\int_{x_{A}}^{x_{B}} E_{x}(x, y, z) d x+\int_{y_{A}}^{y_{B}} E_{y}(x, y, z) d y+\int_{z_{A}}^{z_{B}} E_{z}(x, y, z) d z
$$

Each integrand must be parameterized in terms of the respective integration variable. This requires knowledge of the path C.

Example

Find: \underline{E}
Assume: $\underline{E}(x, y, z)=\underline{\hat{x}} E_{0}$

$$
V_{A B}=\int_{\underline{A}}^{\underline{B}} \underline{E}(x, y, z) \cdot d \underline{r}=V_{0}[\mathrm{~V}]
$$

Example (cont.)

$$
V_{A B}=\int_{\underline{A}}^{B} \underline{E}(x, y, z) \cdot d \underline{r}=V_{0}[\mathrm{~V}]
$$

Evaluate in rectangular coordinates:

$$
\begin{aligned}
& \underline{E}=\underline{\hat{x}} E_{x}+\hat{\hat{y}} E_{y}+\underline{\hat{z}} E_{z} \\
& d \underline{r}=\underline{\hat{x}} d x+\underline{\hat{y}} d y+\underline{\hat{z}} d z
\end{aligned}
$$

$$
\begin{aligned}
& \underline{E} \cdot d \underline{r}=E_{x} d x+E_{y} d y+E_{z}^{\prime} d z \\
& \qquad V_{A B}=\int_{x_{A}}^{x_{B}} E_{x}(x, y, z) d x=V_{0}[\mathrm{~V}]
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
& V_{A B}=\int_{x_{A}}^{x_{B}} E_{x}(x, y, z) d x=V_{0} \\
& \begin{array}{l}
\text { or } \\
\quad \int_{0}^{h} E_{0} d x=V_{0} \\
\quad \text { or } \\
\underline{E}(x, y, z)=\underline{\hat{x}} E_{0}
\end{array}
\end{aligned}
$$

$$
E_{0} h=V_{0} \quad \Longleftrightarrow \quad E_{0}=V_{0} / h
$$

Recall that $\quad \underline{E}(x, y, z)=\underline{\hat{x}} E_{0}$

Hence, we have

$$
\underline{E}(x, y, z)=\underline{\hat{x}}\left(\frac{V_{0}}{h}\right)[\mathrm{V} / \mathrm{m}]
$$

Example

A proton is released at point \underline{A} on the top plate with zero velocity. Find the velocity $v(x)$ of the proton at distance x from the top plate (at point \underline{B}).

Conservation of energy: $\operatorname{KE}(x)-\mathrm{KE}(0)=\operatorname{PE}(0)-\operatorname{PE}(x)$

$$
\frac{1}{2} m v^{2}(x)=\mathrm{PE}(0)-\operatorname{PE}(x)=q[V(0)-V(x)]
$$

Example (cont.)

From last slide: $\quad \frac{1}{2} m v^{2}(x)=q[V(0)-V(x)]$

$$
V(0)-V(x)=\int_{\underline{A}}^{B} \underline{E} \cdot d \underline{r}=\int_{0}^{x} E_{x}(x, y, z) d x=\int_{0}^{x}\left(\frac{V_{0}}{h}\right) d x=\left(\frac{V_{0}}{h}\right) x
$$

Hence: $\quad \frac{1}{2} m v^{2}(x)=q\left(\frac{V_{0}}{h}\right) x$
so $\quad v(x)=\sqrt{\left(\frac{2 q V_{0}}{h m}\right) x}$

Example (cont.)

$$
\begin{aligned}
& v(x)=\sqrt{\left(\frac{2 q V_{0}}{h m}\right) x} \\
& V_{0}=9[\mathrm{~V}] \quad h=0.1[\mathrm{~m}] \\
& q=1.602 \times 10^{-19}[\mathrm{C}] \quad \begin{array}{c}
\text { (See Appendix B of the Hayt \& Buck book or Appendix } \\
\mathrm{D} \text { of the Shen \& Kong book for these values.) }
\end{array}
\end{aligned}
$$

$$
m=1.673 \times 10^{-27}[\mathrm{~kg}]
$$

Hence:

$$
v(x)=5.627 \times 10^{6} \sqrt{x} \quad[\mathrm{~m} / \mathrm{s}]
$$

Reference Point

- A reference point \underline{R} is a point where the voltage is assigned.
- This makes the voltage unique at all points in space.
- The voltage at a given point is often called the "potential" Φ at the point.

Integrating the electric field along C will determine the potential at point \underline{r}.

Note: Φ_{0} is often chosen to be zero, but this is not necessary.

Example

Find the potential on the left terminal (cathode) assuming the reference point \underline{R} is on the right terminal (anode) and $\Phi=0$ at the reference point.

$$
\begin{gathered}
V_{B A}=\Phi(\underline{B})-\Phi(\underline{A})=9[\mathrm{~V}] \\
\Phi(\underline{A})=-9[\mathrm{~V}]
\end{gathered}
$$

$$
\Phi(\underline{R}) \equiv 0
$$

A 9 volt battery:

Find the potential on the right terminal (anode) assuming the reference point \underline{R} is on the left terminal (cathode) and $\Phi=0$ at the reference point.

$$
\begin{gathered}
V_{B A}=\Phi(\underline{B})-\Phi(\underline{A})=9[\mathrm{~V}] \\
\Phi(\underline{B})=9[\mathrm{~V}]
\end{gathered}
$$

This is the more usual choice for the reference point (on the negative terminal).

Example

Find the potential function $\Phi(x), 0<x<h$, assuming that the reference point \underline{R} is on the bottom plate, and the voltage at \underline{R} is zero.

Find the potential function $\Phi(x), 0<x<h$, assuming that the reference point \underline{R} is on the bottom plate, and the voltage at \underline{R} is zero.

$$
\begin{gathered}
V_{A B}=\Phi(0)-\Phi(x)=\int_{0}^{x} E_{x}(x, y, z) d x=\int_{0}^{x}\left(\frac{V_{0}}{h}\right) d x=\left(\frac{V_{0}}{h}\right) x \\
\text { Also, } \Phi(0)-\Phi(h)=V_{0} \Rightarrow \Phi(0)=V_{0} \\
\text { Hence } \Phi(x)=V_{0}-\left(\frac{V_{0}}{h}\right) x[\mathrm{~V}]
\end{gathered}
$$

Voltage Drop in Dynamics

In statics, the voltage drop is unique, and does not depend on the shape of the path. In dynamics, this is not generally true.

Example: TE_{10} mode of rectangular waveguide

$>$ There is a voltage drop along path $C_{1}\left(V_{A B}=E_{0}\right)$.
$>$ There is no voltage drop along path C_{2} (which stays inside the PEC metal).

So...the voltage drop is not uniquely defined!

Voltage Drop in Dynamics (cont.)

One situation where voltage is uniquely defined, even at high frequency: a TEM mode on a transmission line.

