ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes 9

Flux

Notes prepared by the EM Group University of Houston

From Coulomb's law:

$$
\begin{aligned}
& \underline{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \\
& \varepsilon_{0} \doteq 8.854187818 \times 10^{-12} \quad[\mathrm{~F} / \mathrm{m}]
\end{aligned}
$$

Flux lines (Flux lines show us the direction of the electric field vector.)

Charge in free space
(This definition holds in free space.)

We then have

$$
\underline{D}=\frac{q}{4 \pi r^{2}} \hat{r} \quad\left[\mathrm{C} / \mathrm{m}^{2}\right]
$$

Flux Through Surface

\underline{E}

Cross-sectional view

Define flux through a surface:

$$
\psi \equiv \int_{S} \underline{D} \cdot \underline{\hat{n}} d S \quad[\mathrm{C}]
$$

Note:

In this picture, flux is the flux crossing the surface in the outward sense.

$$
\underline{D}=\frac{q}{4 \pi r^{2}} \hat{\underline{r}} \quad\left[\mathrm{C} / \mathrm{m}^{2}\right]
$$

Example

Example (cont.)

$$
\begin{aligned}
\psi & =\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{q}{4 \pi r^{2}}\right) r^{2} \sin \theta d \theta d \phi \\
& =\frac{q}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi \\
& =\frac{q}{4 \pi} 2 \pi \int_{0}^{\pi} \sin \theta d \theta \\
\psi & =\frac{q}{4 \pi}(2 \pi)(2)
\end{aligned}
$$

$$
\psi=q[\mathrm{C}]
$$

Current Analogy

Conducting medium

Analogy with electric current

$$
\underline{J}=\frac{I}{4 \pi r^{2}} \hat{r}
$$

Current Analogy (cont.)

Water Analogy

S

$F_{n}=$ flow rate of water out of nozzle $\left[\mathrm{m}^{3} / \mathrm{s}\right]$
$F_{s}=$ flow rate of water out of surface $\left[\mathrm{m}^{3} / \mathrm{s}\right]$

Note that the flow rate through a closed surface is $F_{s}=F_{n}$.
Water nozzle (omnidirectional)

Each electric flux line is like a stream of water.

Each stream of water carries

$$
F_{n} / N\left[\mathrm{~m}^{3} / \mathrm{s}\right] .
$$

Water Analogy (cont.)

Here is a real "flux fountain"
(Wortham fountain, a.k.a. the "Dandelion" on Allen Parkway).

Water Analogy (cont.)

Analogy example:

$F_{n}=15\left[\mathrm{~m}^{3} / \mathrm{s}\right]$ (flow rate from central node)
$N=1000$ (number of pipes)
$N_{s}=20($ number of flux lines through surface S)

Find F_{s} (flow rate through surface S)

$$
F_{\mathrm{s}}=\left(\frac{15\left[\mathrm{~m}^{3} / \mathrm{s}\right]}{1000[\mathrm{pipes}]}\right)(20 \text { pipes })=0.3\left[\mathrm{~m}^{3} / \mathrm{s}\right]
$$

Flux through a Surface using Flux Lines (Point Charge)

$$
\begin{aligned}
& \text { Example: } \\
& \begin{array}{l}
q=15[\mathrm{C}] \\
N=1000 \text { (number of flux lines) } \\
N_{s}=20 \text { (number of flux lines through surface } s \text {) }
\end{array}
\end{aligned}
$$

Find ψ (flux through surface S)

$$
\psi=\left(\frac{15[\mathrm{C}]}{1000[\text { flux lines }]}\right)(20 \text { flux lines })=0.3[\mathrm{C}]
$$

Flux in 2-D Problems

2-D problems: Everything is infinite and not changing in the z direction.

We now define the flux per meter in the z direction.

$$
\begin{aligned}
\psi & =\int_{S} \underline{D} \cdot \underline{\hat{n}} d S \quad[\mathrm{C}] \\
\psi & =\psi_{l} \times(1[\mathrm{~m}])=\psi_{l}
\end{aligned}
$$

Flux Plot (2-D)

Rules for a 2-D flux plot:

1) Flux lines are in the direction of the electric field*.
2) The magnitude of the electric field is inversely proportional to the spacing between flux lines**.
3) Flux lines come out of positive charges and end on negative charges (they cannot stop or begin in free space)***.

* A convention we adopt.
** A convention we adopt.
*** A consequence of Gauss's law.

Flux plot for a line charge

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{\rho_{10}}{2 \pi \varepsilon_{0} \rho}\right)
$$

Example

Line charge

$\rho_{10}[\mathrm{C} / \mathrm{m}]$
Notice how the flux lines get closer as we approach the line charge: there is a stronger electric field there.

Flux Property in 2-D Flux Plots

The flux (per meter) ψ_{l} through a contour is proportional to the number of flux lines that cross the contour.

General \underline{E} field
N_{C} is defined as the number of flux lines through C.

$$
\psi_{l} \equiv \int_{C} \underline{D} \cdot \underline{\hat{n}} d l \propto N_{C}
$$

Note:

The constant of proportionality depends on how many flux lines you decide to draw.

Please see the Appendix for a proof of this flux property.

Goal:

$$
\begin{gathered}
\text { Graphically evaluate } \\
\psi_{l}=\int_{C} \underline{D} \cdot \underline{\hat{n}} d l \\
\psi_{l}=(4 \text { lines })\left(\frac{1[\mathrm{C} / \mathrm{m}]}{16[\text { lines }]}\right) \\
\psi_{l}=\frac{1}{4}[\mathrm{C} / \mathrm{m}]
\end{gathered}
$$

Equipotential Contours

An equipotential contour C_{V} is a contour on which the potential is constant.

Equipotential Contours (cont.)

Property:

$$
\underline{E} \perp C_{V}
$$

The flux line are always perpendicular to the equipotential contours.
(proof on next slide)
($\Phi=$ constant $)$

Equipotential Contours (cont.)

Proof of perpendicular property:

Two nearby points on an equipotential contour are considered.

Proof:

On C_{V} :

$$
\Longrightarrow \underline{E} \cdot \Delta \underline{r}=0
$$

$\Rightarrow \underline{E} \perp \Delta \underline{r}$

Conclusion: The $\Delta \underline{r}$ vector is perpendicular to the flux lines.

Method of Curvilinear Squares

2-D Flux Plot

"Curvilinear square"

Assumption:

Assume a constant voltage difference

ΔV between adjacent equipotential lines in a 2-D flux plot.

Note:

Along a flux line, the voltage always decreases as we go in the direction of the flux line.

Note:

It is called a curvilinear "square" even though the shape may be rectangular.

Method of Curvilinear Squares (cont.)

Theorem: The shape (aspect ratio L/W) of the "curvilinear squares" is preserved throughout the flux plot.

Assumption: ΔV is constant throughout plot.

$$
\frac{L}{W}=\text { constant }
$$

Method of Curvilinear Squares (cont.)

Proof of constant aspect ratio property

If we integrate along the flux line, \underline{E} is in the same direction as $d \underline{r}$.

$$
\Rightarrow \underline{E} \cdot d \underline{r}=|\underline{E}||d \underline{r}| \cos \left(0^{\circ}\right)=|\underline{E}| d l
$$

Method of Curvilinear Squares (cont.)

Hence,

$$
L=\frac{\Delta V}{|\underline{E}|}
$$

Also,

$$
|\underline{E}| \propto \frac{1}{W}
$$

Reminder:
In a flux plot the magnitude of the electric field is inversely proportional to the spacing between the flux lines.

$$
W=C_{1} \frac{1}{|\underline{E}|}
$$

The constant C_{1} is some constant of proportionality.

Hence,

$$
\frac{L}{W}=\Delta V\left(\frac{1}{C_{1}}\right)=\text { constant } \quad \text { (proof complete) }
$$

Example

Line charge

$\rho_{10}[\mathrm{C} / \mathrm{m}]$

Notice how the flux lines get closer as we approach the line charge: there is a stronger electric field there.

$$
|\underline{E}| \propto \frac{1}{W} \propto \frac{1}{\rho}
$$

The aspect ratio L / W has been chosen to be unity in this plot.
In this example L and W are both proportional to the radius ρ.

A parallel-plate capacitor
Note: $L / W \approx 0.5$

Example

Coaxial cable with a square inner conductor

Figure 6-8 in the Hayt and Buck book (9 ${ }^{\text {th }}$ Ed.).

Making a Flux Plot

Here are the rules for making a 2-D flux plot, assuming that we start with equipotential contours separated by a fixed value of ΔV^{*} :

Rule 1: We start with equipotential contours having a fixed ΔV between.
Rule 2: Flux lines are drawn perpendicular to the equipotential contours.
Rule 3: L / W is kept constant throughout the plot.

If all of these rules are followed, then we have the following properties:

* Flux lines are in direction of \underline{E}.
* The magnitude of the electric field is inversely proportional to the spacing between the flux lines.
* This is what you will be doing in the class project.

Example

In the class project, you will be drawing in flux lines. (The equipotential contours come from Excel.)


```
                                    0 [v]
Parallel-plate capacitor region
```


Example (cont.)

In the class project, you will be drawing in flux lines.

Flux Plot with Conductors

Some observations:

- Flux lines are closer together where the field is stronger.
- The field is strong near a sharp conducting corner.
- Flux lines begin on positive charges and end on negative charges.
- Flux lines enter a conductor perpendicular to it.
http://en.wikipedia.org/wiki/Electrostatics

Example of Electric Flux Plot

Electroporation-mediated topical delivery of vitamin C for cosmetic applications
Lei Zhang ${ }^{\text {a, }}$, Sheldon Lerner ${ }^{\text {b }}$, William V Rustrum ${ }^{\text {a }}$, Günter A Hofmann ${ }^{\text {a }}$
${ }^{\text {a }}$ Genetronics Inc., 11199 Sorrento Valley Rd., San Diego, CA 92121, USA
${ }^{\text {b }}$ Research Institute for Plastic, Cosmetic and Reconstructive Surgery Inc., 3399 First Ave., San Diego, CA 92103, USA.

Example of Magnetic Flux Plot

Solenoid wrapped around a ferrite core (cross sectional view)

Flux plots are often used to display the results of a numerical simulation, for either the electric field or the magnetic field.

Magnetic flux lines

Appendix: Proof of Flux Property

Proof of Flux Property

$\Delta N_{C}=$ number of flux lines

$$
\begin{gathered}
\Delta \psi_{l} \approx(\underline{D} \cdot \underline{\hat{n}}) \Delta L=|\underline{D}| \cos \theta \Delta L \\
\text { so } \quad \Delta \psi_{l} \approx|\underline{D}|(\Delta L \cos \theta) \\
\text { or } \quad \Delta \psi_{l} \approx|\underline{D}|\left(\Delta L_{\perp}\right)
\end{gathered}
$$

Flux Property Proof (cont.)

$$
\Delta \psi_{l} \approx|\underline{D}|\left(\Delta L_{\perp}\right)
$$

Also,

$$
|\underline{D}| \propto 1 /\left(\frac{\Delta L_{\perp}}{\Delta N_{C}}\right)
$$

(from the property of a flux plot)

Hence, substituting into the above equation, we have

$$
\Delta \psi_{l} \propto|\underline{D}| \Delta L_{\perp} \propto\left(\frac{\Delta N_{C}}{\Delta L_{\perp}}\right)\left(\Delta L_{\perp}\right)=\Delta N_{C}
$$

Therefore, $\quad \psi_{l} \propto N_{C} \quad$ (proof complete)

