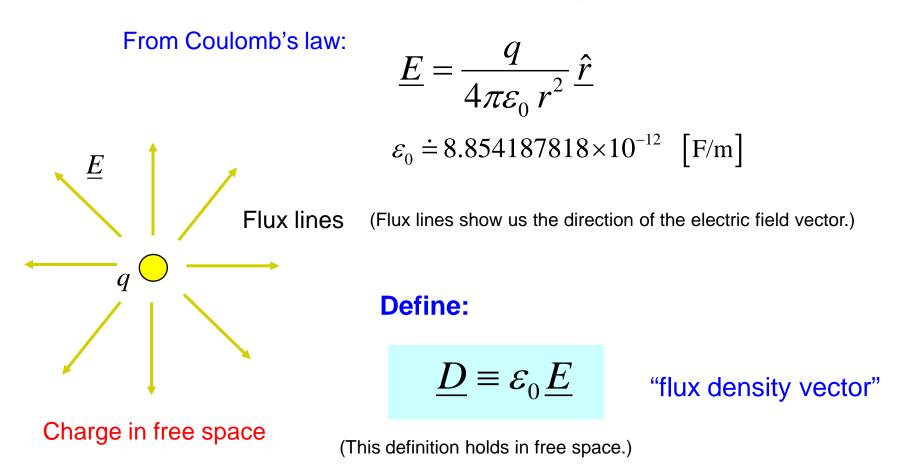
ECE 3318 Applied Electricity and Magnetism

Spring 2023

Prof. David R. Jackson Dept. of ECE

Notes prepared by the EM Group University of Houston

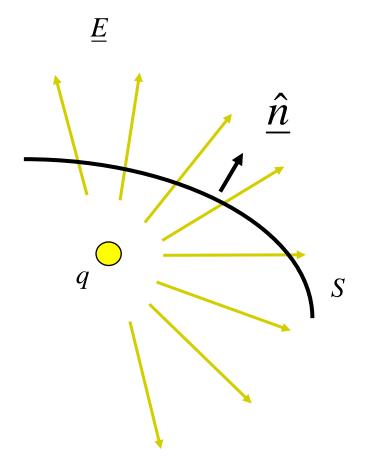
Flux Density



We then have

$$\underline{D} = \frac{q}{4\pi r^2} \hat{\underline{r}} \quad [\mathrm{C/m^2}]$$

Flux Through Surface



Cross-sectional view

Define flux through a surface:

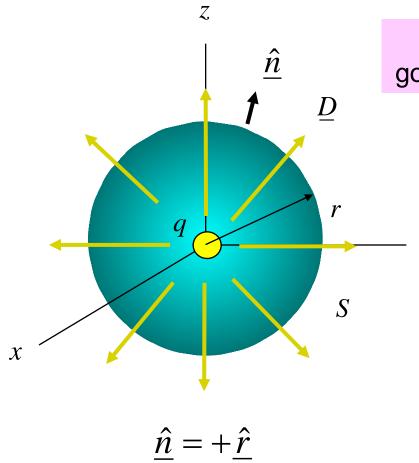
$$\psi \equiv \int_{S} \underline{D} \cdot \underline{\hat{n}} \, dS \quad [C]$$

Note: In this picture, flux is the flux crossing the surface in the <u>outward</u> sense.

$$\underline{D} = \frac{q}{4\pi r^2} \hat{\underline{r}} \quad [\text{C/m}^2]$$

Example

y



(We want the flux going out.)

Find the flux from a point charge going <u>out</u> through a spherical surface.

$$\psi \equiv \oint_{S} \underline{D} \cdot \hat{\underline{n}} dS$$
$$= \oint_{S} \underline{D} \cdot \hat{\underline{r}} dS$$
$$= \oint_{S} \left(\frac{q}{4\pi r^{2}} \hat{\underline{r}} \right) \cdot \hat{\underline{r}} dS$$
$$= \oint_{S} \frac{q}{4\pi r^{2}} dS$$

Example (cont.)

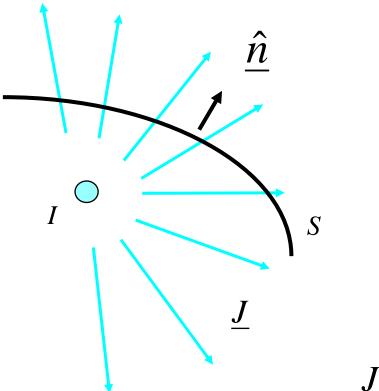
$$\psi = \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{q}{4\pi r^{2}}\right) r^{2} \sin\theta \, d\theta \, d\phi$$
$$= \frac{q}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta \, d\theta \, d\phi$$
$$= \frac{q}{4\pi} 2\pi \int_{0}^{\pi} \sin\theta \, d\theta$$
$$\psi = \frac{q}{4\pi} (2\pi)(2)$$

$$\psi = \frac{q}{4\pi} (2\pi)(2)$$

$$\psi = q$$
 [C]

Current Analogy

Conducting medium



Analogy with electric current

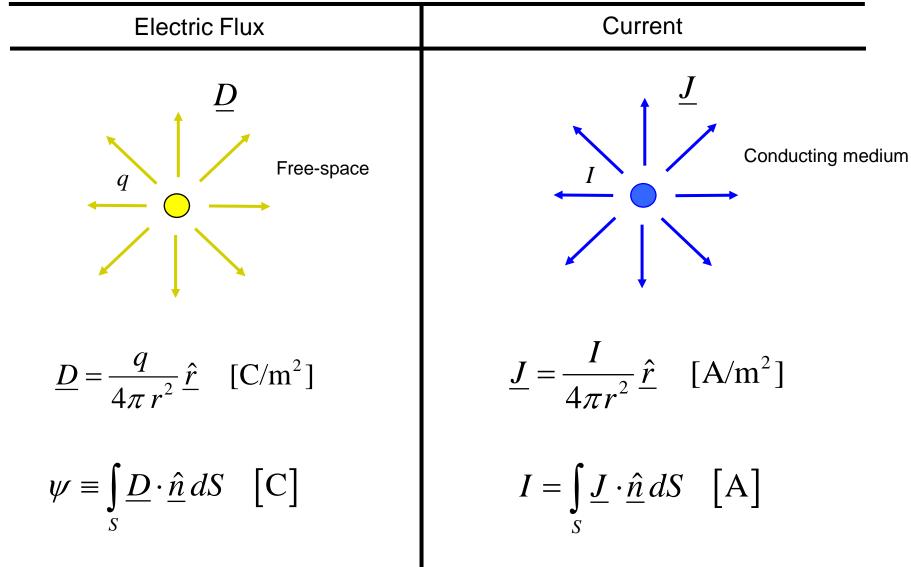
$$I = \int_{S} \underline{J} \cdot \underline{\hat{n}} \, dS \quad [A]$$

A small electrode in a conducting medium spews out current equally in all directions.

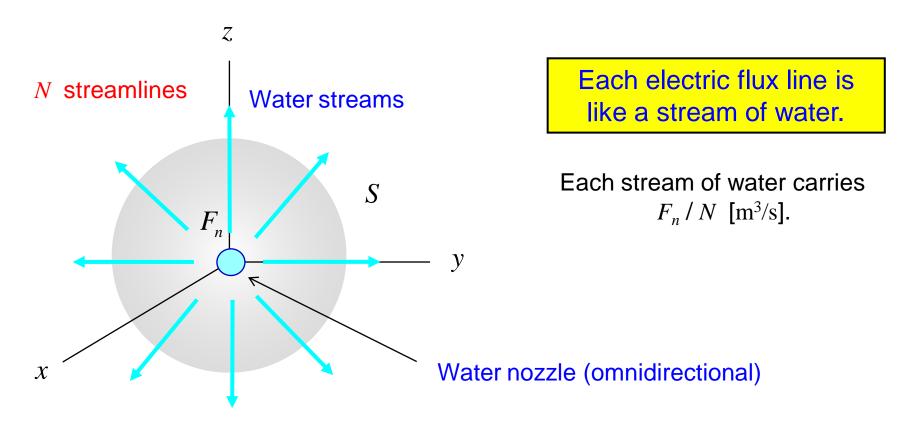
 $\underline{J} = \frac{I}{\Lambda \pi r^2} \hat{\underline{r}}$

Cross-sectional view

Current Analogy (cont.)



Water Analogy



 F_n = flow rate of water out of nozzle [m³/s]

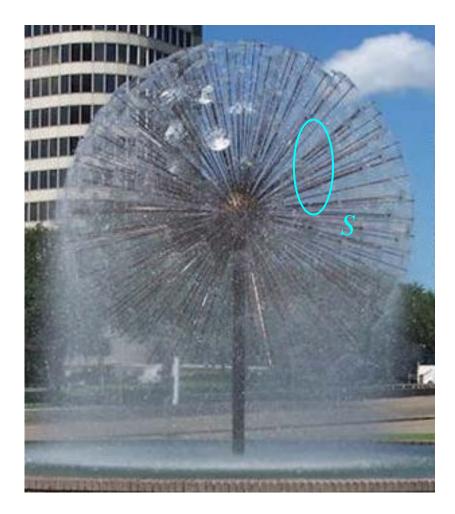
 F_s = flow rate of water out of surface [m³/s]

Note that the flow rate through a closed surface is $F_s = F_n$.

Water Analogy (cont.)

Here is a real "flux fountain" (Wortham fountain, a.k.a. the "Dandelion" on Allen Parkway).

Water Analogy (cont.)



Analogy example:

 $F_n = 15 \left[\frac{\text{m}^3}{\text{s}} \right]$ (flow rate from central node)

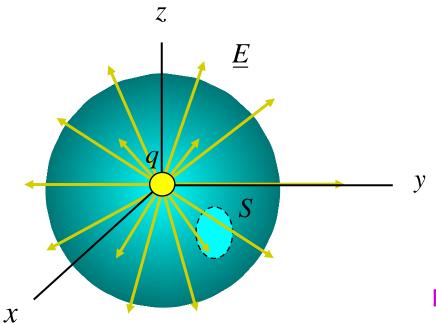
N = 1000 (number of pipes)

 $N_s = 20$ (number of flux lines through surface S)

Find *F_s* (flow rate through surface *S*)

$$F_{s} = \left(\frac{15\left[\text{m}^{3}/\text{s}\right]}{1000[\text{pipes}]}\right) (20 \text{ pipes}) = 0.3 \left[\text{m}^{3}/\text{s}\right]$$

Flux through a Surface using Flux Lines (Point Charge)



Example:

q = 15 [C]

N = 1000 (number of flux lines)

 $N_s = 20$ (number of flux lines through surface S)

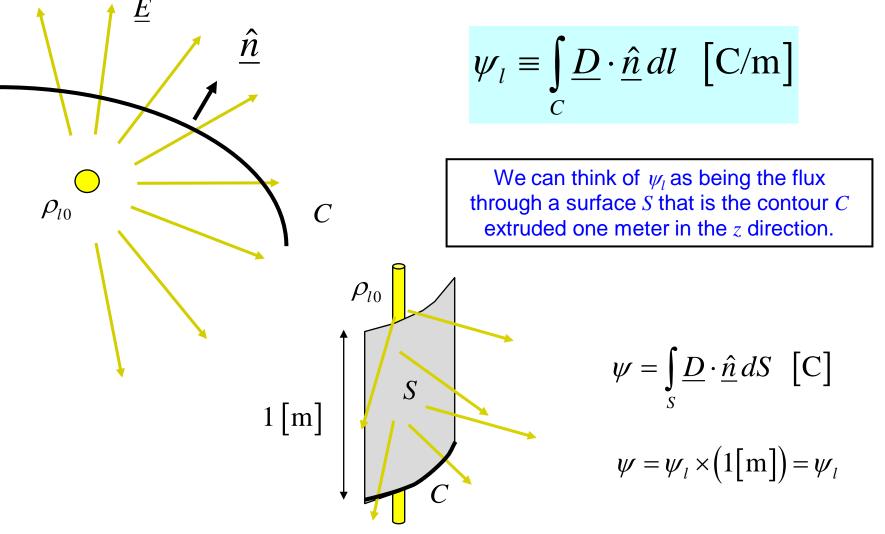
Find ψ (flux through surface *S*)

$$\psi = \left(\frac{15[C]}{1000[\text{flux lines}]}\right) (20 \text{ flux lines}) = 0.3 [C]$$

Flux in 2-D Problems

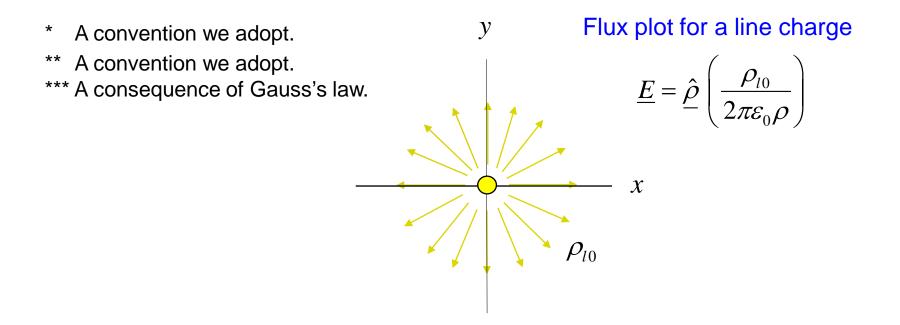
2-D problems: Everything is <u>infinite</u> and not changing in the z direction.

We now define the <u>flux per meter</u> in the z direction.

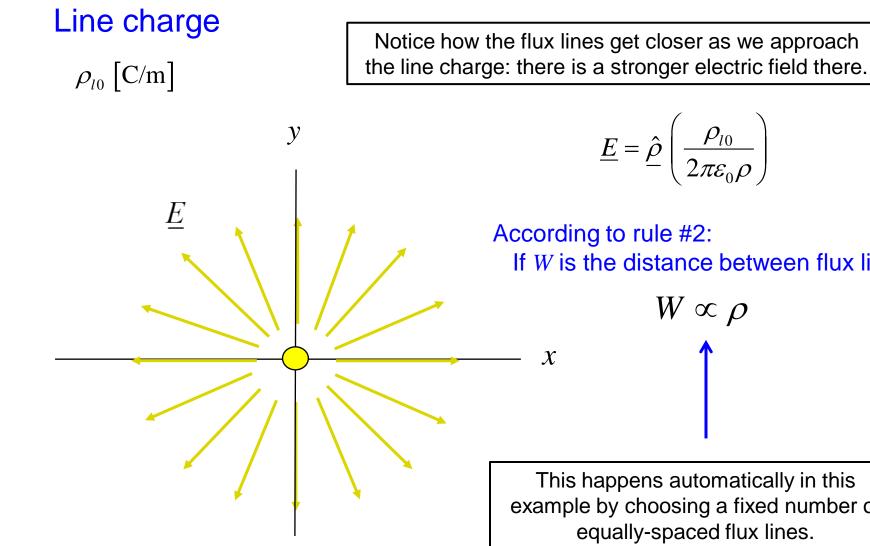


Rules for a 2-D flux plot:

- 1) Flux lines are in the direction of the electric field*.
- 2) The magnitude of the electric field is inversely proportional to the spacing between flux lines**.
- 3) Flux lines come out of positive charges and end on negative charges (they cannot stop or begin in free space)***.



Example



$$\underline{E} = \hat{\underline{\rho}} \left(\frac{\rho_{l0}}{2\pi\varepsilon_0 \rho} \right)$$

According to rule #2: If *W* is the distance between flux lines:

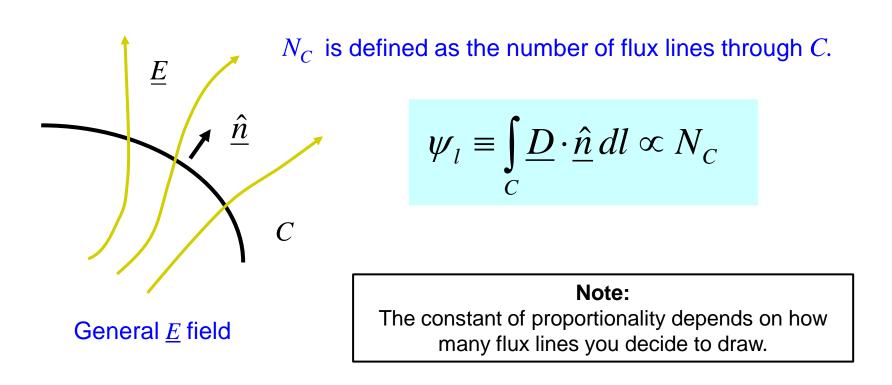
 $W \propto \rho$

Х

This happens automatically in this example by choosing a fixed number of equally-spaced flux lines.

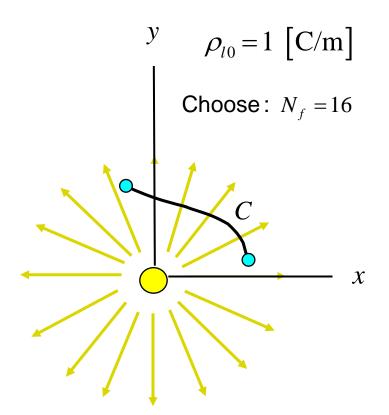
Flux Property in 2-D Flux Plots

The flux (per meter) ψ_l through a contour is <u>proportional</u> to the number of flux lines that cross the contour.



Please see the Appendix for a proof of this flux property.

Example



Goal:

Graphically evaluate $\psi_l = \int_C \underline{D} \cdot \underline{\hat{n}} \, dl$

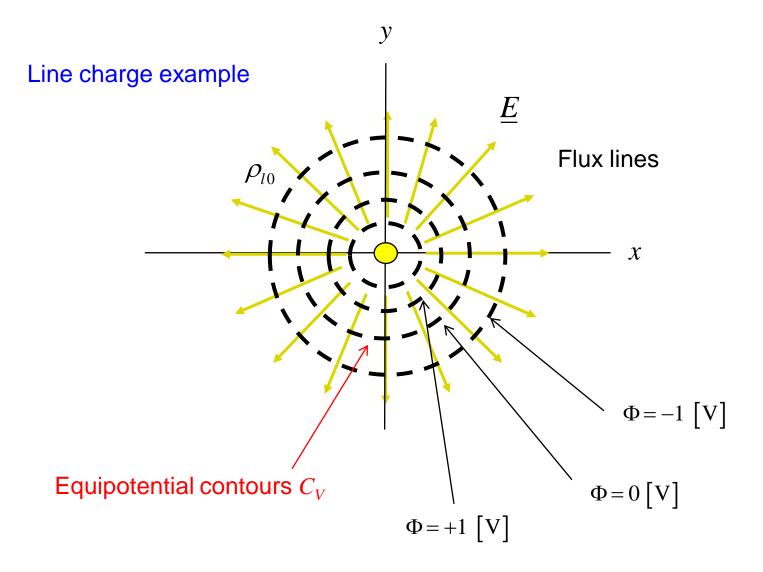
 $\psi_l = (4 \text{ lines}) \left(\frac{1[\text{C/m}]}{16[\text{lines}]} \right)$

Note: The answer will be more accurate if we use a plot with more flux lines!

$$\psi_l = \frac{1}{4} \left[\text{C/m} \right]$$

Equipotential Contours

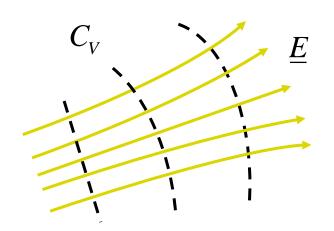
An equipotential contour C_V is a contour on which the <u>potential is constant</u>.



Equipotential Contours (cont.)

Property:

 $\underline{E} \perp C_{V}$



The flux line are always perpendicular to the equipotential contours.

(proof on next slide)

 $(\Phi = constant)$

Equipotential Contours (cont.)

Proof of perpendicular property:

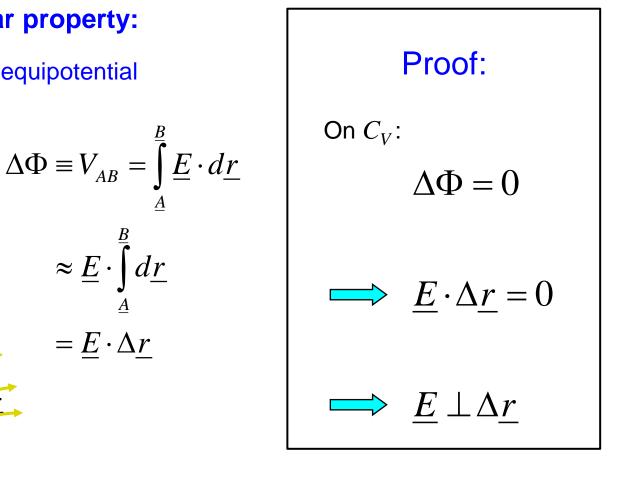
Two nearby points on an equipotential contour are considered.

В

 Δr

Α

 \underline{E}

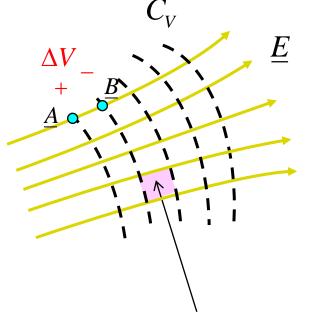


Conclusion: The $\Delta \underline{r}$ vector is perpendicular to the flux lines.

 $= E \cdot \Delta r$

Method of Curvilinear Squares

2-D Flux Plot



"Curvilinear square"

Assumption:

Assume a constant voltage difference ΔV between adjacent equipotential lines in a 2-D flux plot.

Note:

Along a flux line, the voltage always <u>decreases</u> as we go in the direction of the flux line.

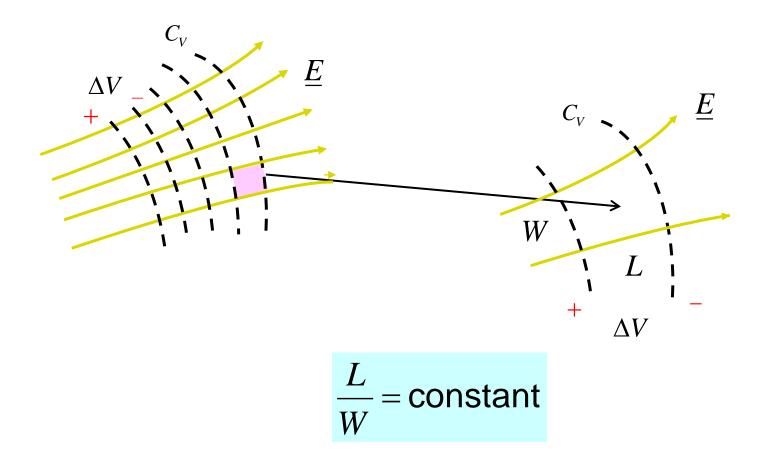
Note:

It is called a curvilinear "square" even though the shape may be rectangular.

Method of Curvilinear Squares (cont.)

Theorem: The shape (aspect ratio *L*/*W*) of the "curvilinear squares" is preserved throughout the flux plot.

Assumption: ΔV is constant throughout plot.

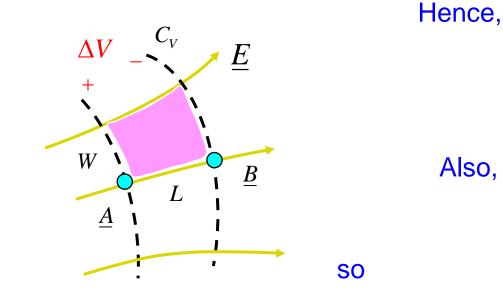


Method of Curvilinear Squares (cont.)

Proof of constant aspect ratio property

 $V_{AB} = \int_{A}^{\underline{B}} \underline{E} \cdot d\underline{r} = \Delta V$ $\frac{d\underline{r}}{L} = \frac{B}{dl} = |d\underline{r}|$ WIf we integrate along the flux line, \underline{E} is in the same direction as $d\underline{r}$. $\Rightarrow \underline{E} \cdot d\underline{r} = |\underline{E}| |d\underline{r}| \cos(0^{\circ}) = |\underline{E}| dl$ Hence, $V_{AB} = \int_{-\infty}^{\underline{B}} |\underline{E}| \, dl = \Delta V$ so $\left|\underline{E}\right| \int_{\underline{I}}^{\underline{B}} dl \approx \Delta V$ Therefore $\left|\underline{E}\right| L \approx \Delta V$

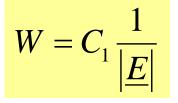
Method of Curvilinear Squares (cont.)



L =	ΔV
	$ \underline{E} $

 $\left|\underline{E}\right| \propto \frac{1}{W}$

Reminder: In a flux plot the magnitude of the electric field is <u>inversely</u> <u>proportional</u> to the spacing between the flux lines.

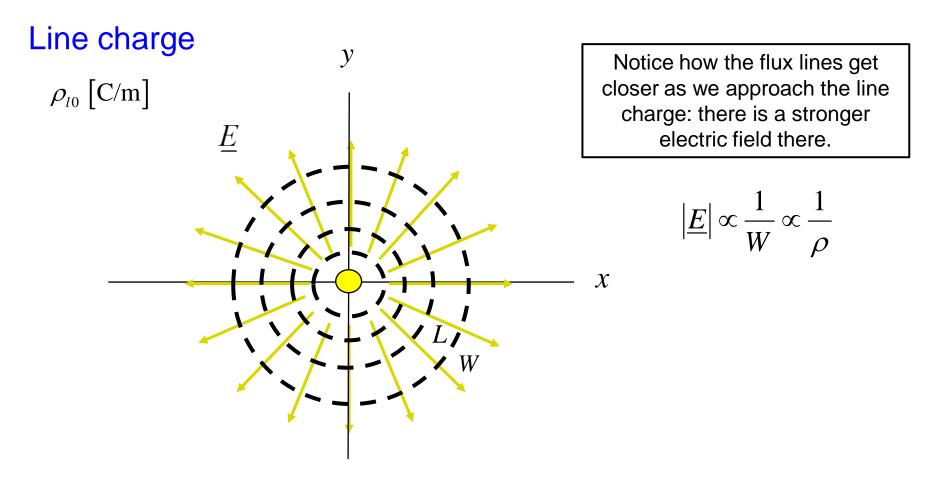


The constant C_1 is some constant of proportionality.

Hence,

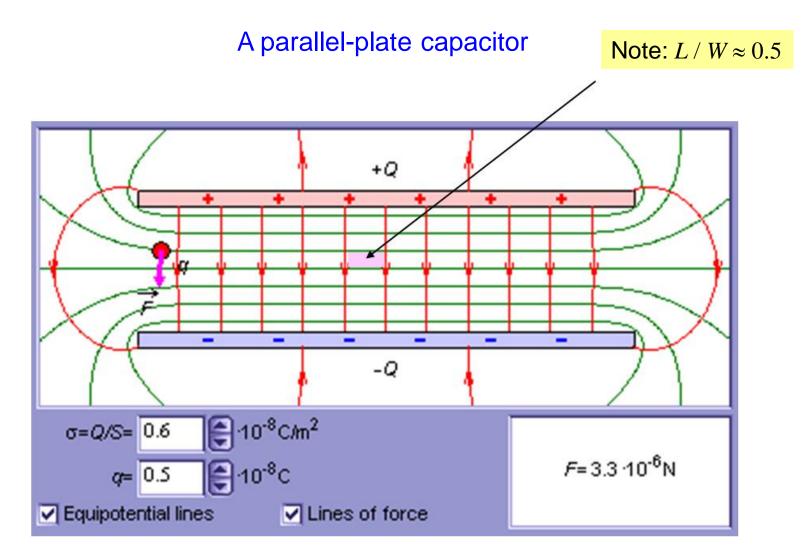
$$\frac{L}{W} = \Delta V \left(\frac{1}{C_1}\right) = \text{constant}$$
 (proof complete)

Example

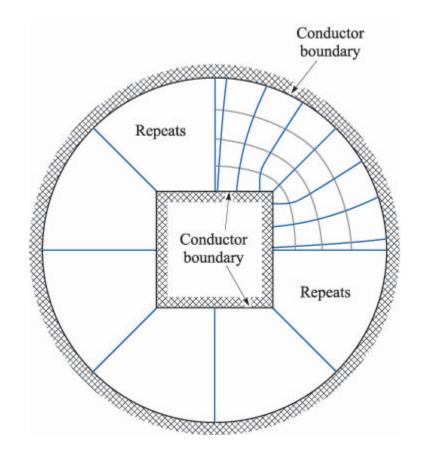


The aspect ratio L/W has been chosen to be <u>unity</u> in this plot.

In this example L and W are both proportional to the radius ρ .



Coaxial cable with a square inner conductor



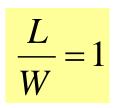


Figure 6-8 in the Hayt and Buck book (9th Ed.).

Making a Flux Plot

Here are the rules for making a 2-D flux plot, assuming that we start with equipotential contours separated by a fixed value of ΔV^* :

Rule 1: We start with equipotential contours having a fixed ΔV between.

Rule 2: Flux lines are drawn perpendicular to the equipotential contours.

Rule 3: L / W is kept constant throughout the plot.

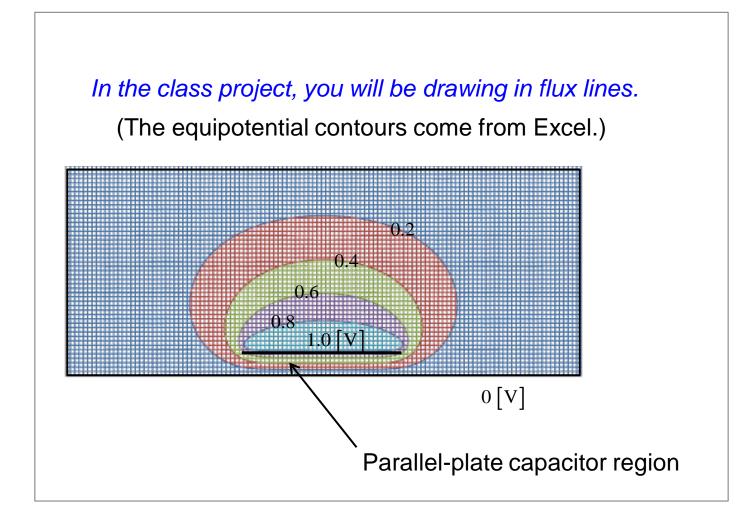
If all of these rules are followed, then we have the following properties:

• Flux lines are in direction of \underline{E} .

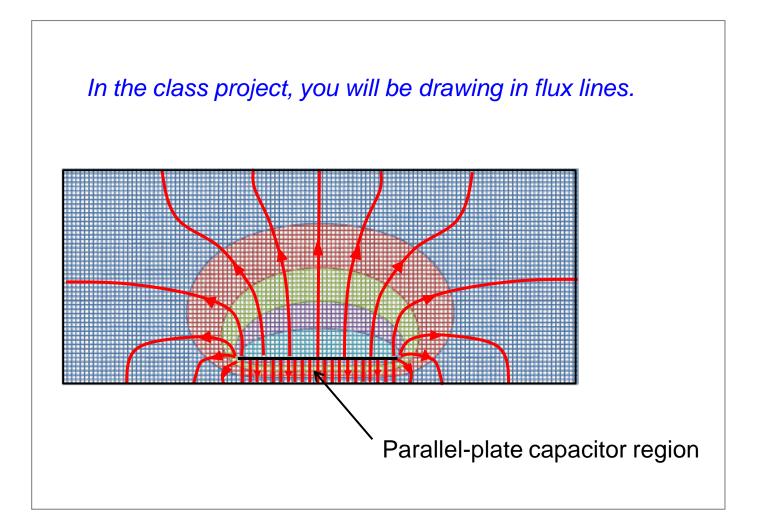
The magnitude of the electric field is inversely proportional to the spacing between the flux lines.

* This is what you will be doing in the class project.

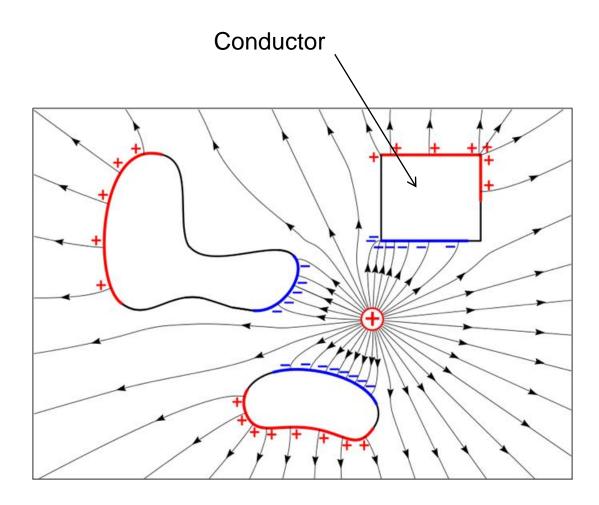
Example



Example (cont.)



Flux Plot with Conductors

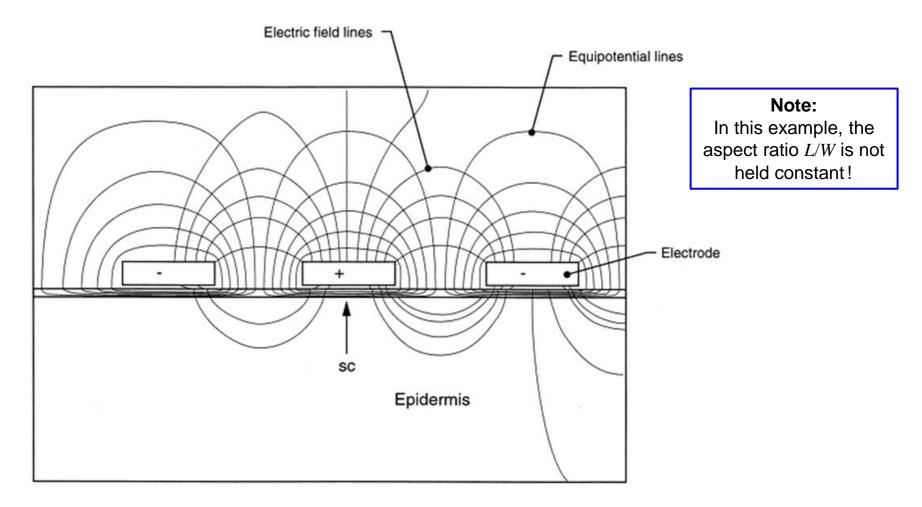


Some observations:

- Flux lines are closer together where the field is stronger.
- The field is strong near a sharp conducting corner.
- Flux lines begin on positive charges and end on negative charges.
- Flux lines enter a conductor perpendicular to it.

http://en.wikipedia.org/wiki/Electrostatics

Example of Electric Flux Plot



Electroporation-mediated topical delivery of vitamin C for cosmetic applications

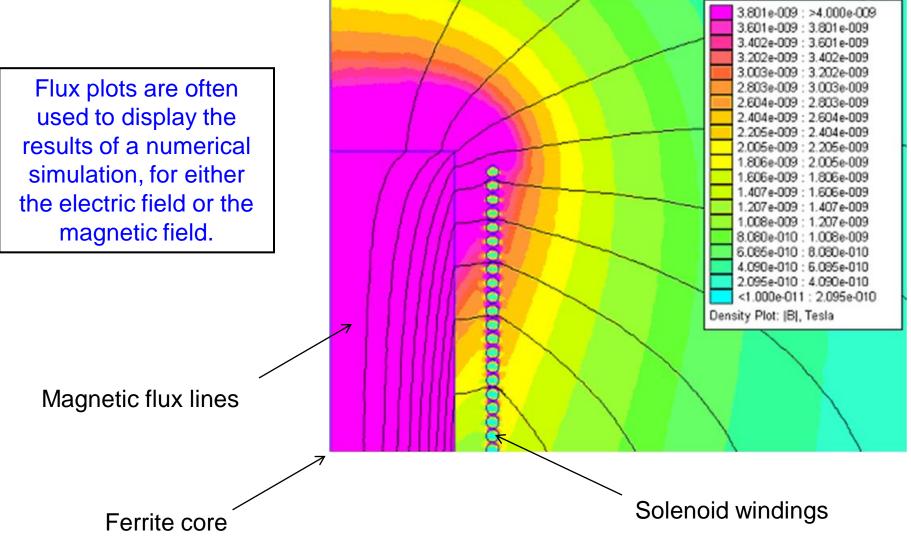
Lei Zhang^{a,}, Sheldon Lerner^b, William V Rustrum^a, Günter A Hofmann^a

^a Genetronics Inc., 11199 Sorrento Valley Rd., San Diego, CA 92121, USA

^b Research Institute for Plastic, Cosmetic and Reconstructive Surgery Inc., 3399 First Ave., San Diego, CA 92103, USA.

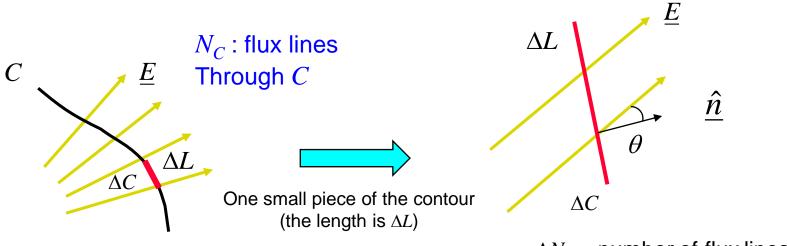
Example of Magnetic Flux Plot

Solenoid wrapped around a ferrite core (cross sectional view)



Appendix: Proof of Flux Property

Proof of Flux Property

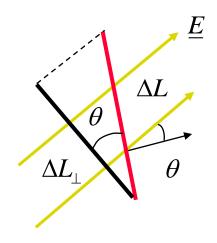


 ΔN_c = number of flux lines

$$\Delta \psi_{l} \approx \left(\underline{D} \cdot \underline{\hat{n}}\right) \Delta L = \left|\underline{D}\right| \cos \theta \,\Delta L$$

so
$$\Delta \psi_{l} \approx \left|\underline{D}\right| \left(\Delta L \cos \theta\right)$$

or
$$\Delta \psi_{l} \approx \left|\underline{D}\right| \left(\Delta L_{\perp}\right)$$



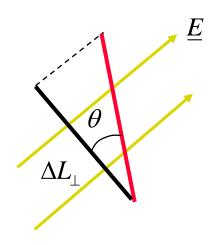
Flux Property Proof (cont.)

$$\Delta \psi_l \approx \left| \underline{D} \right| \left(\Delta L_{\perp} \right)$$

Also,

$$\left|\underline{D}\right| \propto 1 / \left(\frac{\Delta L_{\perp}}{\Delta N_{C}}\right)$$

(from the property of a flux plot)



Hence, substituting into the above equation, we have

$$\Delta \psi_{l} \propto \left| \underline{D} \right| \Delta L_{\perp} \propto \left(\frac{\Delta N_{C}}{\Delta L_{\perp}} \right) \left(\Delta L_{\perp} \right) = \Delta N_{C}$$

Therefore,

$$\psi_l \propto N_C$$
 (proof complete)