ECE 3318
 Applied Electricity and Magnetism
 Spring 2023

Homework \#2

Date Assigned: Thursday, Jan. 26, 2023
Due Date: Thursday, Feb. 2, 2023

1) A parallel-plate capacitor has a plate separation of h. The capacitor is connected to a battery of voltage $V_{0}[\mathrm{~V}]$, with the anode connected to the top plate. The top plate at $x=$ 0 is taken as a reference, where the voltage is zero. The bottom plate at $x=h$ is grounded. Find a formula for the potential $\Phi(x)$ inside the capacitor. What is the potential of the bottom plate?
2) Derive the identity $\underline{\hat{x}}=\underline{\hat{\rho}} \cos \phi+\underline{\hat{\phi}}(-\sin \phi)$.
3) Derive the identity $\underline{\hat{\theta}}=\underline{\hat{x}} \cos \theta \cos \phi+\underline{\hat{y}} \cos \theta \sin \phi+\underline{\hat{z}}(-\sin \theta)$.
4) An electric field is described by $\underline{E}=\underline{\hat{y}}(y)+\underline{\hat{x}}(x)[\mathrm{V} / \mathrm{m}]$.

Find the voltage drop $V_{A B}$ by integrating along the circular arc, as shown below.
(This is similar to one of the examples in the Appendix of Notes 6 -- you might want to look at this example.)

5) Repeat the previous problem by integrating first from point \underline{A} to the origin, and then from the origin to point \underline{B}. Do you get the same result as above?
6) An electric field is described in cylindrical coordinates as

$$
\underline{E}=\underline{\hat{\rho}}\left(\frac{1}{\rho}\right)[\mathrm{V} / \mathrm{m}] .
$$

Find the voltage drop $V_{A B}$ where \underline{A} is the point $(1,0,0)$ and \underline{B} is the point $(2, \pi / 2,1)$. (In the description of these points, the cylindrical coordinate notation (ρ, ϕ, z) is used, where dimensions are in [m] and angles are in radians.) Assume that the voltage drop is path independent (i.e., this is a valid electrostatic field), so you can use any path that you wish. (Hint: Consider choosing part of the path to be an arc of a circle, part of the path to be a straight horizontal line, and part of the path to be a straight vertical line.)

Question for your consideration: In this problem, do you have to actually choose a path, or does the calculus let you evaluate the integral without doing so? Even if you do not have to choose a path, go ahead and use the one suggested in the hint.
7) A hemispherical surface defined by a radius $r=5[\mathrm{~m}]$ and $z>0$ has a surface charge density of $\rho_{s}=2 \sin \theta \cos ^{2} \phi \quad\left[\mathrm{C} / \mathrm{m}^{2}\right]$. Find the total charge on the surface.
8) A cylindrical volume is defined by $\rho<\rho_{0}$ [m], $0<z<h$ [m], and $0<\phi<2 \pi$. Inside this region there is a volume charge density

$$
\rho_{v}=e^{-\rho^{2}} \cos ^{2} \phi \sin \left(\frac{\pi z}{h}\right)\left[\mathrm{C} / \mathrm{m}^{3}\right] .
$$

Find the total charge inside the region.
9) A current density vector is given as

$$
\underline{J}=\underline{\hat{z}}(z)\left[\mathrm{A} / \mathrm{m}^{2}\right] .
$$

Find the total current crossing the surface of a hemisphere that is defined by $r=2$ [m$]$ and $z>0$. The current is defined to be the current crossing the surface in the upward (outward) sense.
10) A surface current density \underline{J}_{s} is one that flows on a surface, corresponding to a surface charge density in motion on the surface. The units are $[\mathrm{A} / \mathrm{m}]$. The 2-D form of the charge-velocity equation states that the surface current density vector is given by

$$
\underline{J}_{s}=\rho_{s} \underline{v} .
$$

The current crossing a contour C on the surface is given by

$$
I=\int_{C} \underline{J}_{\underline{s}} \cdot \underline{\hat{n}} d l .
$$

Consider a uniform surface charge density $\rho_{s 0}\left[\mathrm{C} / \mathrm{m}^{2}\right]$ in the $z=0$ plane moving in the x direction at a constant velocity (speed) of $v[\mathrm{~m} / \mathrm{s}]$.
a) Determine the surface current density vector.
b) Find the current in amps that crosses, from left to right, a straight line of length two meters, lying in the $z=0$ plane and making a 45° angle with respect to the x axis (i.e., lying along a line $\phi=45^{\circ}$).

Extra Problems (not to be turned in - for extra practice only):

Shen and Kong: None
Hayt and Buck, $7^{\text {th }}$ Edition: $1.18-1.30,5.2,5.3,5.5(\mathrm{a}), 5.6(\mathrm{a}, \mathrm{b})$

