

Remember this? now let's talk about it.

Test floating point input with machine—precision number

input a real number D
between 0. and 1.

Select display> 16 25 45 60 \
precision

Computer internal value vs. input

_.-| Blue:ideal
1.%x107° | Red: actual

8.x10716

6.x10716

A.x107 The computer
2.%107¢ can't tell the
difference and
hence, it returns
to you zero.

Computer internal value-1

you deposited

$1 mil machine precision problem

\-T-"

There are only 10 types

of people in the world
those wiho understand binary

gand those who don't

J‘/.I.I‘
A‘JII'

R

s we know, digital
computer:deals only
with bits 1 and O

4 A12

BIONIC

NEW DIE MAP FOR INTEL" CORE"™ X-SERIES PLATFORM

by f l’lq'ﬂ
Y gy INTEL" CORE"™ 19-7980XE
CUEEC pROCESSORDIEMAP

: !‘!!f | 4 4 ."-"f_l_!.,;.; ¥ 14 nm tri-gate 3D transistors
iy e [
i LR [ey

_i ; Phess

Floating point
unit (FPU) inside

each core

3 T:"-: Shared 2

L L3 Cache -

=
1 uu:-flz !

N .',..,.,:;gﬁ‘:'_i"*'lemorv Cuntrﬁller :-_: 3

FPU in each core

AMD Threadripper

[e
R i -

et e o |

https://www.techopedia.com/definition/2865/floating-point-unit-fpu

Each core

There are 3 choices to input a number

Click open Click open

Choice 1: (run Mathematica) — click ENTER. A dialog

UNIVERSITYof HOUSTON AbpbyHanQ.le © poxaliowswoutonnputareal (FP) or integer
S | I numMBberorpreciSIoNPEd 100 decimal digits

ECE 3340 - APP 1.0.1.1 —‘Cmputer binarv*epresentaﬁon of numbers

RUN STATUS/CONTROL I | / : :
: / ChOICE2: Input a FP using

| / PESantisse and exponent sliders
Common binary rep¥esentation of nurhbers in most computers in thic part

CRBICE3: Input an integer up to
200Ecimal digits using dials of
this part

|

sub=1-
mantissa

10°N : , . PREAPPYWI | know whether you input an

FPOraniinteger and states it here
number input: @
in other base: |1 2.54h, x1671° CPU word length: | 32 : .
= s1219-25 I J [BWillte |l the precision level of the
131213,1455¥10159
! 649,0371073168,5345356691, 2041152512 InpUtAL mber

2.0216586113 7672901505 3385403760 49326093117 723473358 10718

It will show what the actual value
of the input is, based on internal
binary representation

It will show value of‘the input in other bases from
2-16, selected by clicking here. For example, it
shows the input in hex base here: 2.54b*16/-15

Problem 1

Enter the APP an integer that includes your birthdate in the following format:
mmddyyyy. Example 02041998 for Feb 4 1994. (obviously in this case, you can
drop the first digit 0). Obtain:

il the number in hexadecimal, and in the binary representation (same as
base 2)

2 write a code to verify you obtain the same results as the APP.

3. Do questions 1 and 2 again but this time with your student ID number in
front of your birthdate number, for example: 12345678902041998.

4, Discuss any difference between the two numbers in terms of the number
of bytes required.

Precision pf previous entry: 7

Lo .
‘Y
P
1311994
11111010
00010100| /| oK |

UNIVERSITYof HOUSTON AppbyHanQ.Le ©

ECE 3340 — APP 1.0.1.1 —Computer binary representation of numbers
o srrusconrsor ST Y

Common binary representation of numbers in most computers

Free form number entry if run APP in Mathematica— Your input

Real input

sub-1-
mantissa

10AN n Your input in hexadecimal

- -

A
number input: 1,311,994 m

&5
in other base: 16| 1404fa;g CPU word length: ﬂ

s T T his shows it needs a minimum of 3
bytes. Shown here 2 full 16-bit units,

-
2B-part 0 00000100:1111101°0|&" N et byte ic |
2B-part 1 00000000:00010100 pven the last byte is just 0.

®
_.I- Sock: bit 0= —

o
| uhite: bit 1 IINESe help to visualize the bit pattern

Binary representation of your input.

Problem 2

Enter the APP a floating point number that includes your birthdate in the
following format: 0.mmddyyyy * 10A(m1d1), where m1 is the first non-zero digit
of your month and d1 is the first non-zero digit of your date. Example 02041999
for Feb 4 1999 will be entered as 0.02041999*10724. Obtain:

1

the number in hexadecimal and in base 2 (not the same as the binary
representation)

The 11-bit exponent and the 52-bit mantissa of the binary representation.
Then use Mathematica command RealDigits[yournumber, 2] to obtain the
53-bit mantissa in the first part of the output. Drop the 1 bit because it is
always 1. Verify the remaining 52 bits match the APP output.

The last bit of the mantissa represent 22-52. This is the smallest difference
between 2 numbers of the same exponent. Calculate it and verify that it is
machine epsilon.

The bit pattern (copy, or print screen and paste)

Repeat questions 1-2 again but this time with your student ID number in

front of your birthdate number in this way: studentlD.birthdate. Example:
123456789.1311994 (use ENTER command, do not use sliders because it
is pretty long). Obtain the bit pattern, which is your personal coded ID.

If the input is a FP number, it will
show:

- 1 sign bit: 0 for >= 0 and 1 for <=0
- 11 exponent bits

number ihput: 2.021 658611376729 % 10-1/8/ MachinePrecision] }
: s - 52 bits for the mantissa
in other base: | 16 2.54b,; % 16 !‘ ﬁ)]

131213,1457110159 7/ (WhICh actually has 53 bits.

649,0371073168,5345356631,2041152512 / The first bit is alwavs 1 and
2.021p586113 7672901505 3385403760 4532023117 723473358 x 10718 b

needs not be stored here).

ofofsfojz]o 1 o]
OJiJof1[1 000
ﬂﬂﬂl-ﬂﬂﬂ
EIEIEIEIEI-

llilllillilllill

.nnnnnn. black: bit 0;
[1]0]1]0[0[1]0]1] o
nnnnn white: bit 1

150 5 (e o L
1 o .

The 8 bytes can be
total is a 64-bit word — arranged in 8x8 dot

shown here as 8 bytes matrix display

Problem for fun only

Find floating points or integers (easier) that have bits patterns representing the
initials of your first and last name.

Example: 16,419,452,012,919,037,084 and 4,123,389,611,252,201,785 will
give something. Check it out.

Below are illustrations of common patterns: each has a number. Find your
“digital signature” with your name initials.

Find floating points and/or integers for these patterns

Is there something fundamental and natural about how to represent a FP in
binary? Is there something “sacred” about reserving 11 bits (instead of 10,
12,...) for exponent and 52 bits for mantissa?

e |tisjustaruletomapaFP number to a set of bits that the computer
handles; based on practical considerations for applications.

e The rule can be thought of as a “binary-coded-decimal” convention,
although IBM actually used that exact expression for their
computers (aka BCD and EBCDIC in analogy to 8-bit ASCII) in the 60’s.

e The rules can be made up by different computer makers, different
entities/organizations, and evolved over time.

e What we see here in this APP is IEEE-754 convention, which is useful
for a wide range of applications and virtually the standard in all PC’s.

So, do | need to know the history, the evolution, the rationale, the
melodrama or tragicomedy behind the story how binary-FP has been done
over the course of computing history?

Here is an example what happens in Excel:

X array y=1+X x0=y-1
array array

1| 5.000E-15 1. OOOOOOOOOOO(IOlObOOOOE+OO 5.10702591327572000000E-15
1 90680288865056000000E-15
1 044000000E 15
1 528000000E‘
1 528000000£1-1‘3
1 1.00000000000000000000E+00 1. 77635683949025000000E 15
1 1.00000000000000000000E+00},~= 1. 77635683940025000000E 1
1 1.00000000000000000000E+00 ‘~.DJ)OOOOOOOOOOOOOOOOOOOE+ 0
1| 1.500E-15 1.00000000000000000000E+00 0. OOOOOOOOOOOOOOOOOOOE+OO
Notice that x and x0 are not what happens right here? why x0
equal as expected. cannot gradually go from 1.776*107-15
to ~ 1.6*107-15 as expected, but jumps
What we see here is the limit of to zero?

machine precision which
causes the INACCU racCy observed.

imagine this: there is an investment fund

containing gazillion dollars. Asset= 1 gazillion

You add to the account your
saving of $1 mil, because it
promises 50%profit return
in 1 year

- i
R = ThReE

=t L -m-'r-.
- ol e

but the mvesTmen’r company uses
Excel on 16-bit CPU and your

portion is below its precision,
hence, it flushes to zero

A AN A b SIS . 0000000000000000000DE S

this amount At least, it has a lot of zeros!

..&.Q[_}DD_E}DDDDDDDDDDDDD_D_D_& 3

Now, we look at this problem
again but at the bit-level
(binary of FPU process)

Click open this APP

UNIVERSITYof N\ousrou App by Han Q. Le ©
N Controlepsilon by selecting its

ECE 3340 — APP 1.0.2.1 —Lo%s of precision in adding/subtracting mantissa and exponent. Shown
Nereissnen < = 1

£ mantissa [] Y — I8t €

£X10MN 1 51 1 0 I (5]))) [T [T) R T (BT Here) ¢ = 1 and y=2 (its first
gigitis in front of both 1 (top)
and ¢ (row 2).

We are interestedind=y—-1=(1+¢)—1
Is & = £ as it should be? in this case, it is, as both = 1.

Loss of precision illustration in binary

£ mantissa

£X10*N [o|-1|-2 31-41-5]-6 ~7[=8)-9/-10/-11[-12|-13|-14 |15 7

”
e
e

€ = 3.2*50'9 y = 1 +/8’/

7
! 10000000 | 00000000 DDDDDDﬁD 00000000 | 00000000 | OODOOODOO0 | 00000= = -

machine
epsilon

Problem 3

Use APP “1.0.2.1 loss of precision” to do the following: Chose € mantissa to be
“0.mmddyyyy” where mmddyyyy is your birthdate (do not include the front zero if you are
born between Jan and Sept — for example, if you are born on March 21, 1999, just type in
number 0.3211999. If your BD is 12/25/1998, then type in 0.12251998).

Follow instruction

evalue (in | # € lost # € bits #o 0 value Your birthdate decoded from &
decimal) bits (blue) | addedto | significant (decimal) | based on 0.mddyyyy, and how “old”
y bits (purple) are you?

hint: For the next to last column, you can use Mathematica command FromDigits (demo
in class).

A note about Mathematica
precision options

i

WOLFRAM

MATHEMATICA

So, after all said and done, can T just use
Mathematica arbitrary precision and skip
all these hassles?

Yes and no. In some problems, yes.

Remember that for serious number crunching
jobs that require huge # of FLOPs, native
machine processing is still the fastest.

Write smart, robust, error-proof codes that
can exploit machine FLOP with results well
within our tolerances.

	ECE3340�Binary representation of numbers
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Assignment APP
	Slide Number 10
	Problem 1
	Slide Number 12
	Slide Number 13
	Problem 2
	Slide Number 15
	Problem for fun only
	Slide Number 17
	Loss of precision
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Problem 3
	A note about Mathematica precision options
	Slide Number 26

