
ECE3340
Binary representation of numbers
PROF. HAN Q. LE

Instead of giving us a linear
straight line like the blue line, the
computer actual values are
quantized into discrete step values
(red curve). Why?

you deposited
$1 mil

The computer
can’t tell the
difference and
hence, it returns
to you zero.

machine precision problem

Remember this? now let’s talk about it.

As we know, digital
computer deals only
with bits 1 and 0

We live in a digital world

2005

Everything is 64 bit now

Floating point
unit (FPU) inside
each core

FPU in each core
AMD Threadripper

https://www.techopedia.com/definition/2865/floating-point-unit-fpu

Assignment APP
BINARY REPRESENTATION OF NUMBERS

APP ECE 3340-APP-
1.0.1.1_binary

Click open Click open
There are 3 choices to input a number

Choice 1: (run Mathematica) – click ENTER. A dialog
box allows you to input a real (FP) or integer
number of precision up to 100 decimal digits

Choice 2: Input a FP using
mantissa and exponent sliders
in this part

Choice 3: Input an integer up to
20 decimal digits using dials of
this part

The APP will know whether you input an
FP or an integer and states it here

It will tell the precision level of the
input number

It will show what the actual value
of the input is, based on internal
binary representation

It will show value of the input in other bases from
2-16, selected by clicking here. For example, it
shows the input in hex base here: 2.54b*16^-15

Problem 1
Enter the APP an integer that includes your birthdate in the following format:
mmddyyyy. Example 02041998 for Feb 4 1994. (obviously in this case, you can
drop the first digit 0). Obtain:

1. the number in hexadecimal, and in the binary representation (same as
base 2)

2. write a code to verify you obtain the same results as the APP.

3. Do questions 1 and 2 again but this time with your student ID number in
front of your birthdate number, for example: 12345678902041998.

4. Discuss any difference between the two numbers in terms of the number
of bytes required.

You can use choice 1: (run Mathematica) – click
ENTER. A dialog box allows you to input a real (FP)
or integer number of precision up to 50 decimal
digits

or directly dial in an integer up
to 20 decimal digits using dials
of this part

Your input

Your input in hexadecimal

Binary representation of your input.
This shows it needs a minimum of 3
bytes. Shown here 2 full 16-bit units,
even the last byte is just 0.

These help to visualize the bit pattern

Problem 2
Enter the APP a floating point number that includes your birthdate in the
following format: 0.mmddyyyy * 10^(m1d1), where m1 is the first non-zero digit
of your month and d1 is the first non-zero digit of your date. Example 02041999
for Feb 4 1999 will be entered as 0.02041999*10^24. Obtain:

1. the number in hexadecimal and in base 2 (not the same as the binary
representation)

2. The 11-bit exponent and the 52-bit mantissa of the binary representation.
Then use Mathematica command RealDigits[yournumber, 2] to obtain the
53-bit mantissa in the first part of the output. Drop the 1st bit because it is
always 1. Verify the remaining 52 bits match the APP output.

3. The last bit of the mantissa represent 2^-52. This is the smallest difference
between 2 numbers of the same exponent. Calculate it and verify that it is
machine epsilon.

4. The bit pattern (copy, or print screen and paste)

5. Repeat questions 1-2 again but this time with your student ID number in
front of your birthdate number in this way: studentID.birthdate. Example:
123456789.1311994 (use ENTER command, do not use sliders because it
is pretty long). Obtain the bit pattern, which is your personal coded ID.

If the input is a FP number, it will
show:
- 1 sign bit: 0 for >= 0 and 1 for <=0

- 11 exponent bits

- 52 bits for the mantissa
(which actually has 53 bits.
The first bit is always 1 and
needs not be stored here).

total is a 64-bit word –
shown here as 8 bytes

The 8 bytes can be
arranged in 8x8 dot
matrix display

Problem for fun only
Find floating points or integers (easier) that have bits patterns representing the
initials of your first and last name.

Example: 16,419,452,012,919,037,084 and 4,123,389,611,252,201,785 will
give something. Check it out.

Below are illustrations of common patterns: each has a number. Find your
“digital signature” with your name initials.

Is there something fundamental and natural about how to represent a FP in
binary? Is there something “sacred” about reserving 11 bits (instead of 10,
12,…) for exponent and 52 bits for mantissa?

No. None. Nada….
• It is just a rule to map a FP number to a set of bits that the computer

handles; based on practical considerations for applications.
• The rule can be thought of as a “binary-coded-decimal” convention,

although IBM actually used that exact expression for their
computers (aka BCD and EBCDIC in analogy to 8-bit ASCII) in the 60’s.

• The rules can be made up by different computer makers, different
entities/organizations, and evolved over time.

• What we see here in this APP is IEEE-754 convention, which is useful
for a wide range of applications and virtually the standard in all PC’s.

So, do I need to know the history, the evolution, the rationale, the
melodrama or tragicomedy behind the story how binary-FP has been done
over the course of computing history?

No. Unless you are a computer science historian.

Loss of precision
OR “HOW I LOST $1 M TO A 16-BIT EXCEL MACHINE”

1
small

number
column A+B Column C-A

1 5.000E-15 1.00000000000001000000E+00 5.10702591327572000000E-15
1 4.000E-15 1.00000000000000000000E+00 3.99680288865056000000E-15
1 3.000E-15 1.00000000000000000000E+00 3.10862446895044000000E-15
1 2.000E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.900E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.800E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.700E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.600E-15 1.00000000000000000000E+00 0.00000000000000000000E+00
1 1.500E-15 1.00000000000000000000E+00 0.00000000000000000000E+00

Here is an example what happens in Excel:

x array y=1+x
array

x0=y-1
array

what happens right here? why x0
cannot gradually go from 1.776*10^-15
to ~ 1.6*10^-15 as expected, but jumps
to zero?

Notice that x and x0 are not
equal as expected.

What we see here is the limit of

machine precision which

causes the inaccuracy observed.

Remember this?

imagine this: there is an investment fund
containing gazillion dollars. Asset= 1 gazillion

You add to the account your
saving of $1 mil, because it
promises 50%profit return
in 1 year

but the investment company uses
Excel on 16-bit CPU and your
portion is below its precision,
hence, it flushes to zero

At least, it has a lot of zeros!

Hence, after one year, your
account is deposited with
this amount

$

and this?

Now, we look at this problem
again but at the bit-level
(binary of FPU process)

Click open this APP

Control epsilon by selecting its
mantissa and exponent. Shown
here is when 𝜀𝜀 = 1

𝑦𝑦 = 1 + 𝜀𝜀
Here, 𝜀𝜀 = 1 and y=2 (its first
digit is in front of both 1 (top)
and 𝜀𝜀 (row 2).

We are interested in δ = 𝑦𝑦 − 1 = 1 + 𝜀𝜀 − 1
Is δ = 𝜀𝜀 as it should be? in this case, it is, as both = 1.

Here, we choose 𝜀𝜀 to be a small
number

𝑦𝑦 = 1 + 𝜀𝜀
To add to 1, 𝜀𝜀 is padded with a lot of
insignificant zeros (red) in front, which means
the significand bits in blue is pushed back into
the rear

We are interested in δ = 𝑦𝑦 − 1 = 1 + 𝜀𝜀 − 1
Is δ = 𝜀𝜀 as it should be? No, because it retains only a portion of 𝜀𝜀 in
purple. This is how precision is lost. y is so close to 1 and their
subtraction retains only the purple portion. If 𝜀𝜀 is less than machine
epsilon, we have nothing but zero left.

These blue bits are lost
forever when added to y,
because y mantissa
doesn’t have room to
save them

Problem 3
Use APP “1.0.2.1 loss of precision” to do the following: Chose 𝜀𝜀 mantissa to be
“0.mmddyyyy” where mmddyyyy is your birthdate (do not include the front zero if you are
born between Jan and Sept – for example, if you are born on March 21, 1999, just type in
number 0.3211999. If your BD is 12/25/1998, then type in 0.12251998).

Follow instruction

𝜀𝜀 value (in
decimal)

𝜀𝜀 lost
bits (blue)

𝜀𝜀 bits
added to
y

𝛿𝛿
significant
bits (purple)

𝛿𝛿 value
(decimal)

Your birthdate decoded from 𝛿𝛿
based on 0.mddyyyy, and how “old”
are you?

hint: For the next to last column, you can use Mathematica command FromDigits (demo
in class).

A note about Mathematica
precision options

So, after all said and done, can I just use
Mathematica arbitrary precision and skip
all these hassles?

Yes and no. In some problems, yes.

Remember that for serious number crunching
jobs that require huge # of FLOPs, native
machine processing is still the fastest.

Write smart, robust, error-proof codes that
can exploit machine FLOP with results well
within our tolerances.

	ECE3340�Binary representation of numbers
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Assignment APP
	Slide Number 10
	Problem 1
	Slide Number 12
	Slide Number 13
	Problem 2
	Slide Number 15
	Problem for fun only
	Slide Number 17
	Loss of precision
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Problem 3
	A note about Mathematica precision options
	Slide Number 26

