ECE3340
Numerical Methods for Electrical and Computer Engineering
PROF. HAN Q. LE

If you love math \& computer coding, you will very likely enjoy the course
...If you hate math, or suffer doing math \& computer coding, well,... are you sure you are in the right place?

An example of pure (number theory) math Prove that: 2+2=4 Or...

Prove that there are more irrational numbers between (01) than all integers or rational numbers

Or...
No three integers a, b, c can satisfy the equation below for integer $n>2$

$$
a^{n}+b^{n}=c^{n}
$$

GODEL, ESCHER, BACH: an Eleran! Goiden Braid

- This course is about applied math for scientific, electrical engineering applications, and also general quantitative science.
- Physical quantities, e. g. mass, velocity, voltage, current, frequency, temperature, pressure, flux, power, energy, and whatnot... are represented by real numbers, and related to each other by physical laws.
- Why numerical methods?
- Data analysis of experiments and measurements.
- Practical scientific/engineering problems aren't solved with abstract symbols (v, i, ω, P...), but with numerical values for applications. We need numerical methods to obtain accurate \& precise results.
- Beyond practical applications, computation - especially simulation can give valuable insights and understanding of a problem. Numerical methods are needed for efficiency and accuracy.

Example

Examples without inductor L

Q. 2 What is a most common name for these two circuits? (extra credits if you name each one differently based on its function and not by a permutation of letters)

Consider this circuit that has no resistors, no dissipative elements (things that absorb power or energy permanently and not give back to the circuit). Assume perfect capacitor and perfect inductor.

Switch A was connected for a long time $\mathrm{t}<0$ and switch B was open.

Then switch A is opened at time $t_{\mathrm{A}}<=0$; simultaneously or after t_{A}, switch B is instantaneously closed at $\mathrm{t}=0$.
Q. 3 What is the voltage $v_{\text {out }}$ before and after the switches are activated? Sketch your guess what it looks like (only "guessing" is asked, no solving equation or anything complicated).

A similar question but for a different circuit:

Q. 4 For all time $t<0$, input $x[t]=1$ Volt. Suddenly at $t=0$, the input is switched to 0 V (with zero impedance at the input). Sketch your best guess what voltage $y[t]$ looks like as a function of time for $t>=0$. Extra credit if you write the correct mathematical expression for $\mathrm{y}[\mathrm{t}]$.

Numerical calculation can give us practical results (with values for actual application) as well as insight for designing, modification, and invention!

When design a circuit, we want to know how it works, what it does for the intended application. We want numerical simulation results such as this:

This is what "numerical methods" is about. The objective: learn how to use computers to apply to ECE problems.

For those who have taken ECE2100 there are many examples of circuit simulation using numerical methods on the web site

Example: an op amp oscillator

For those who have taken ECE2100 there are many examples of circuit simulation using numerical methods on the web site

Example: harmonic responses of analog PID controller \square

For those who have taken ECE2100 there are many examples of circuit simulation using numerical methods on the web site

Example: Bode plots and harmonic responses

Bode plots: amplitude (top), phase (bottom),
With Bode plots, any phasor at any frequency is determined

phasors corresponding
to points on Bode plots

For those who have taken ECE2100 there are many examples of circuit simulation using numerical methods on the web site

Example: transient response of a second order circuit

For those who have taken ECE2100 there are many examples of circuit simulation using numerical methods on the web site

Example: circuit response functions

All the above calculations and simulations are fairly simple and straightforward (thanks to powerful CPU and sophisticated software).
Yes, you can do similar
things after this course.
(hard working is required)

Although not scientific or engineering, this is an example of a numerical problem involving computer and programming (coding).

Without a computer, it may take days, weeks for someone to do by hand, which serves no useful purpose other than knowing the company to send your resume in (if looking for a job)... ("googling" it!)

A link to history of computer

Today

Yesteryear

Mother Tongues

Tracing the roots of computer languages through the ages

Just like half of the world's spoken tongues, most of the 2,300 -plus computer programming languages are either endangered or extinct. As powerhouses $\mathrm{C} / \mathrm{C}++$ Visual Basic, Cobol, Java and other modern source codes dominate our systems, An ad hoc collection of engineers-electronic lexicographers, if you will-aim to save, or at least document the lingo of classic software. They're combing the globe's 9 million developers in search of coders still fluent in these nearly forgotten lingua frangas. Among the most endangered are Ada, APL, B (the predecessor of C), Lsp,
Oberon, Smalltalk, and Simula.

Code-raker Grady Booch, Rational Software's chief scientist, is working with the Computer ew compilers so our ever-changing hardware can grok the code. Why bother? "They tell us about the state of software practice, the minds of their inventors, and the technical, social, and economic forces that shaped history at the time," Booch explains. "They'll provide the raw material for software archaeologists, historians, and developers to learn what worked, what was brilliant, and what was an utter failure." Here's a peek at the strongest branches of programming's family tree. For a nearly exhaustive rundown, check out the Language
at HTTP://www.informatik.uni-freiburg.de/Java/misc/lang list.html. - Michael Mendeno

RedMonk Q318 Programming Language Rankings

Numerical methods for scientific and electrical engineering applications

- This course is about concepts, methods, and algorithms. It is (and should be) hardware-and-software-agnostic.
- Once you master the fundamentals, you can apply what you learn on any platform \& IDE of your choice. (e. g. Python,...)
- That said, for convenience, there must be a single common platform for course materials: Wolfram Mathematica (read the syllabus).

Higher level - specialized for scientific/engineering app.

Lower level implementation - general app. (web, games)

\underline{U} of Houston licensed software

Matlab

Wolfram
 Mathematica

Get the
Wolfram CDF Player

This Course lectures \& HW

- Easy for quick \& dirty demo.
- Convenient symbolic manipulation.

Free IDE stuffs (many...)

I have tested with a focused group, consisting of students from sophomore to senior level, also two at grad level - all without Mathematica \& Python experience.
Results showed that they learned more with less effort with Mathematica lectures than with Python lectures.
Of course, the results could be different if students were Python experts, however we cannot assume that for ECE 3340.

For those who use Anaconda, jupyter notebook is quite similar to Mathematica notebook (in concept)

\bigcirc ANACONDA ${ }^{\circ}$ NAVIGATOR

Upgrade Now
Sign in to Anaconda Cloud

Mathematica has a huge list of built-in functions

Course material formats for download

Main

Others

A tutorial in Mathematica

About of this course

- Review and learn some essential mathematics that have widespread applications in scientific/engineering problems.
- The three most important things of the course are application, application, and application. "It's all about APPs!"
- Computer usage is of course the essential vehicle of learning. Bring your computer to do work in class as often as possible.

What this course is

- Learning computer programming. That's for other courses, e. g. ECE 3331. Practice makes perfect: whether you learned it in 3331 or you may already be an APP developer since HS, you are strongly encouraged to hone your programming skill by practicing what you learned. (Will help you to review/ refresh your memory as much as possible).

If you love math AND computer programming, you will very likely enjoy the course.

$-=$ The more coding you do, the better you will be at it

- Reinforcing your knowledge of electrical engineering (in this case, we pick circuit to be the example topic for numerical math)

> Math knowledge at MATH 3321 level and proficiency in computer programming at ECE 3331 level or better are prerequisite.

ECE 3340 - Numerical Methods for Electrical and Computer Engineers Credit Hours: 3.0
Lecture Contact Hours: 3 Lab Contact Hours: 0

Prerequisite: ECE 3331 and MATH 3321.
Basic linear algebra and numerical methods with electrical engineering applications. Emphasis on use of computer-based solution techniques.

Background math of numerical methods

What "electrical engineering applications?"

Basic programming/ coding

We will not learn "numerical methods" in theory and abstract, but by specific examples and applications in electrical engineering.

Expected work in this course

- Active lecture and class participation: you will participate to contribute to lecture and discussion in class
- Clase more important than HW: Bring paper, pens and your computer to do work in class. Turn in at the end of the class for credit.
Most important: take ownership of your own education: contribute to your own "lecture."
- Homework: First, try to do on your own. Then get help and collaborate if needed (peer learning). Submit on time and follow policy on late HW.

A good combination of personal best effort and/or peer interactive learning can help you a great deal.

Tests/exams: to be determined. No need for them if the other two categories are "good enough."

- Final personalized project: to be determined.

Weight

Two reference textbooks

Very easy to read and practical (used in ECE 2331)

This book is a classic! And like many other classics...

R. W. HAMMING Numerical Methods for Scientists and Engineers

- A beautiful work - a lifetime of wisdom from the author, R. W. Hamming.
- It's hard to absorb the wisdom of a lifetime in a short semester. (you wouldn't need taking this course if you read and understand the book)
- We will use it as a reference textbook:
- Much of things in the book are already used and implemented in commercially available or free software.
- Some are still relevant, some are less crucial because of increasing computing power and more sophisticated (intelligent) software.

In practice

- Rarely, if ever - do practicing scientists/engineers have to write own codes for utility apps such as find roots, integration, differential eqs., FDTD, FEM, special functions, linear/nonlinear systems,... and many others.
- There are huge libraries for those things in commercial or free software, developed by dedicated professionals using well established or latest algorithm development, debugged, optimized for CPU speed, memory... Why re-invent the wheel?
- Actually, in a professional world, we would insist any user to use established commercial software - don't write your own except for own research: higher risk of bugs and errors. If you need a car, would you rather buy one or drive a contraption built by your colleagues?
- This course helps you become an intelligent, informed user of scientific/engineering software to be a professional electrical engineer - but not to develop you into a professional software developers: this is the job for computer science major at PhD level.

A note about Computer Programming

or how not to be an obsolete human model in the HAL 9000 world

ECE 3331, Programming Applications in Electr \& Comptr Engr

What expected is the acquiring of concepts and skills of computer programming in general, which are not necessarily limited to specific knowledge of $C, C++$, or $C \#$,...

Programming concepts such as flowchart, object-oriented structure, procedural process are not languagedependent.

Linear Algebra	
5.1 Introduction	
5.2	Systems of Linear Equations; Some Geometry
5.3 Solving Systems of Linear Equations, Part I	
5.4	Solving Systems of Linear Equations, Part II
5.5 Matrices and Vectors	
5.6 Square Matrices; Inverse of a Matrix, Determinants	
5.7	

"hello world"
symbolic manip, anonym func

Learning a language

An example of how one can quickly adapt..

List

Python	Mathematica
[a,b,c]	\{a,b,c\}
[5, 'string', 1.4]	\{anything, all objects, multi-media...\}
len()	Length[]
["list", ["nested list item", a, b] , ...]	Same. Use Depth[] to see nest level.
indexing: my_list[n]	mylist[[n]]
negative index	same
list.append()	AppendTo[]... Prepend, PrependTo
list.remove()	Drop[, n] ... (* see details *)
del my_list[n]	see Drop[] above
insert()	Insert[]
clear()	not Clear[]
$\begin{aligned} & \text { my_list=['p','y','t',''h','o','n']; } \\ & \text { my_list[0:2]= ['m','a','r','a'] } \end{aligned}$	$\begin{aligned} & \text { Join[\{"m","a","r",""a"\} } \\ & \text {,Drop[mylist, } 2] \text {] } \end{aligned}$
extend()	Join[]
sorted()	Sort[]
reverse	Reverse[]
list=[function(x) for x in range(n$)$]	mylist=Table[..., $\{x, n\}$]
range(n)	Range [n], but starting from 1 not zero and end with n , not $\mathrm{n}-1$.
```x=['a',2,'b',4.2] for u in x: if isinstance(u,numbers.Number): print(u**2) else: print("not a number")```	```Do[ If[NumberQ[u], Print[u^2], Print[u, " is not a number"]] , {u, x}]```
$\min (), \max ()$	Min[], Max[], MinMax[]
sum()	Total[]
all(), any()	AllTrue[], AnyTrue[]

## An example of how one can quickly adapt...



$\begin{aligned} & \text { np.array() } \\ & \text { np.ndarray() } \end{aligned}$	Table[]
$\begin{aligned} & \text { np.random.randint(n1,n2,size }=(\mathrm{j}, \mathrm{k})) \\ & \text { np.random.rand() } \end{aligned}$	```RandomInteger[{n1,n2},{j,k}] RandomReal[]```
np.random.normal(mu,s,n)	RandomVariate[NormalDistribution[ $m u, s$ ], $n$ ] see Mathematica docum for full list of distributions
np.dot(a,b)	a . b
np.matmul(m,a) m @ a	m . a a . m
my_array.shape()	Dimensions[]
np.full()	ConstantArray[]
my_array[i,k:m]	$\begin{aligned} & \text { my_array }[\mathbf{i}, \mathbf{k ;} ; \mathrm{m}] \quad[[1]] \\ & \text { Take[my_array[[i]],\{k,m\}]} \end{aligned}$
$\begin{aligned} & m . T \\ & \text { np.matrix.transpose() } \end{aligned}$	Transpose[]
np.linalg.inv()	Inverse[]

## Jupyter

 notebook example

Some math fun example7968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502
338175463746493931925506040092710167113900984882401285836160356370766010471 1181942955596198946767837449448255379774



 3843904512441365497627807977156914359977001296160894416948685553484063534220722258284886481584560285060168427394522
6746767889525213852254995466672782398645659611635488623057745549803559363456817432411251507606947945109659609402522

 1048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907 Th
俍 9989859982387345528331635507647918535893226185489632132933089857064204675259070915481416549859461637180270981994309 9244889575712828905923233260972997120844335732654893823911932597463667305836041428138830320382490375898524374417029 1327656180937734440307074692112019130203303801976211011004492932151608424448596376698389522868478312355265821314495 7685726243344189303968642624341077322697802807318915441101044682325271620105265227211166039666557309254711055785376 3466820653109896526918620564769312570586356620185581007293606598764861179104533488503461136576867532494416680396265 7978771855608455296541266540853061434443185867697514566140680070023787765913440171274947042056223053899456131407112 7000407854733269939081454664645880797270826683063432858785698305235808933065757406795457163775254202114955761581400 2501262285941302164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437 5189573596145890193897131117904297828564750320319869151402870808599048010941214722131794764777262241425485454033215 7185306142288137585043063321751829798662237172159160771669254748738986654949450114654062843366393790039769265672146
3853067360965712091807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501 3853067360965712091807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501 5660496318629472654736425230817703675159067350235072835405670403867435136222247715891504953098444893330963408780769

Any two in the class have the same birthdate?

Everyone has the same answer ("googling it")

## Check your answer with this APP



If you haven't got a license for Mathematica download free CDF player and you can run this

