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…~ 99 – 99.9% of computing numerical 
errors are likely due to user’s coding 
errors (syntax, algorithm)…

and the tiny remaining portion may be due 
to user’s lack of understanding how 
numerical computation works…

Hope this course will help you on this 
problems

Computing errors



Homework/Classwork 1
CHECK OUT THE PERFORMANCE OF YOUR COMPUTER



Click open this APP

Click to ask your machine the 
smallest number it can handle 
(this example shows 64-bit x86 
architecture)

Log base 2 of the number 

Do the same for the largest 
number

Click to ask the computer the 
smallest relative difference 
between two number that it 
can tell apart. This is called 

machine epsilon

If you use an x86 64-bit CPU, the above is what you get.

HWHW

CW



HW-Problem 1
Use any software (C++, C#, MATLAB, Excel,…) but not 
Mathematica (because it is too smart and can handle the test 
below) to do this:

1. Let’s denote xmax be  the largest number your computer can 
handle in the APP test. Let x be a number just below xmax , 
such as ~0.75 xmax. (For example, I choose x=1.5*10^308). 
Double it (2*x) and print the result.

2. Let xmin be your computer smallest number. Choose x just 
above it. Then find 0.5*x and print output.



Enter a number Column A*2. Column A/2.
4 8 2
5 10 2.5

1.50E+308 #NUM! 7.50E+307
6.00E-308 1.20E-307 3.00E-308
5.00E-308 1.00E-307 2.50E-308
4.00E-308 8.00E-308 0.00E+00

Here is an example what happens in Excel:

Number just slightly less than 
my computer xmax

Number just slightly more than 
my computer xmin

You should get similar results in other software and language.

Excel error: instead of giving 
the correct answer 3*10^308, 
it gives error output. This is 

caused by overflow

Excel fails: instead of giving me the correct answer: 

2*10^-308, it “flushes to zero” by giving zero 
output.

This is caused by underflow : a result that is too 
small for the computer to handle, it sets as zero.

Note the three key 
concepts 
highlighted in 
yellow



HW-Problem 2
Use any software (C++, C#, MATLAB, Excel,…) but not 
Mathematica (because it is too smart and can handle the test 
below) to do this. Let denote eps (for ε) be the smallest relative 
difference that your computer can handle – aka machine 
epsilon (it is 2.22*10^-16 on my machine, for example).

Then, generate an array of 5-20 elements (your choice), with 
values ranging from above your computer eps to below eps. 
Denote this array as x array.

Then, add 1 to x array, denote it as y:          y=1+x;

Then, define x0 array:                             x0=y-1;

Print out all 3 arrays: x, y, and x0 and compare. Is your x0 the 
same as x?



1
small 

number
column A+B Column C-A

1 5.000E-15 1.00000000000001000000E+00 5.10702591327572000000E-15
1 4.000E-15 1.00000000000000000000E+00 3.99680288865056000000E-15
1 3.000E-15 1.00000000000000000000E+00 3.10862446895044000000E-15
1 2.000E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.900E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.800E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.700E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.600E-15 1.00000000000000000000E+00 0.00000000000000000000E+00
1 1.500E-15 1.00000000000000000000E+00 0.00000000000000000000E+00

Here is an example what happens in Excel:

ε array y=1+ ε 
array

ε0=y-1
array

Notice that ε and ε0 are not 
equal as expected.

what happens right here? why ε0 
cannot gradually go from 1.776*10^-15 
to ~ 1.6*10^-15 as expected, but jumps 
to zero?What we see here is the limit of 

machine precision which 

causes the inaccuracy observed.



imagine this: there is an investment fund 
containing gazillion dollars. Asset= 1 gazillion

You add to the account your 
saving of $1 mil, because it 
promises 50% profit return 
in 1 year

but the investment company uses 
Excel on 16-bit CPU and your 
portion is below its precision, 
hence, it flushes to zero

At least, it has a lot of zeros!

Hence, after one year, your 
account is deposited with 
this amount

$



anyway!

All is not lost, the company 
kindly sent you a card…



A different kind of precision problem:
Sometimes, digits are lost on the other 
side (overflow)



Problem 3
You don’t have to do any calculation, only discuss what you think 
here:

1. Describe what you observe from doing problems 1 and 2 above 
and what is your thought on the results? (in other words, try your 
best to explain what’s wrong). 

2. What limits a computer to have a maximum and minimum 
magnitude for numbers? (this is limited by machine processor 
and not by software like Mathematica).

3. If a computer can handle a number as small as 3*10^-308, why 
can’t it handle a difference between 1 and 1+eps when eps is 
1*10^-16, which is >> than the smallest number 10^-308 that it 
can handle?

$
this problem is aka “how 
your million dollars 
flushed to zero”



Click open this tab of 
another APP.

Use slider to input a 
number

Click to choose how many 
digits you want to see 
(decimal level of precision)

This is the actual number 
value inside the computer, not 
what you think you enter.

This is the error between what you want 
to input (for example. 0.3 here), and what 
it really is (0.2999 whatever…). Why can’t 
it just record something as simple as 0.3?



Problem 4
Use the APP above to enter 3-5 non-zero numbers (the example is 0.3, 
but you should enter a set of unique numbers for yourself, e. g. 0.155, 
0.291, 0.43, 0.68, 0.912  don’t copy this, please – pick your own 
unique values). Record what the actual numbers are, and the errors.

1. Make a table (like in Excel) a column of numbers you enter, a 
column of their actual values, and a column of ratio 
abs(error)/number – this is called relative error (for example, 
ratio abs(3.7*10^-17)/0.3 = 1.23*10^-16)

2. Enter a few values that are multiple of 1/2^n, where n=1, 2, 3. For 
example 0.125, 0.375, etc. Do you see any errors?

3. Write why you think there are errors? Why the magnitude of 
relative errors is ~ the machine epsilon you find in APP 1. Why do 
you see errors in question 1, but the errors in question 2 are zero 
(which means the numbers inside the computer are exact).



Click this to see an error plot. The 
input varies from 1+0*10^-16 to 
1+10^10-16 = 1+1*10^-15 

Instead of giving us a linear 
straight line like the blue line, the 
computer actual values are 
quantized into discrete step values 
(red curve). Why?

you deposited 
$1 mil

The computer 
can’t tell the 
difference and 
hence, it returns 
to you zero.

machine precision problem



Problem 5
Calculate or estimate the quantized step size from the APP for your 
computer (not this demonstrated computer – although very likely 
you have exactly the same result if you have  x86 64-bit CPU). 

Then, approximate your step size as 1
2𝑛𝑛

and obtain the integer 
value n, (you can take log2 of the step size to get -n). This is the 
number of significant bits of your machine floating point 
mantissa.

From here on, 
you can use 
Mathematica. 
Example of 
the code is 
given here.

We have 52- bit mantissa



wait a minute, I thought the machine is 64-
bit. Why the mantissa has only 52 bits? 
what happens to the other 12 missing bits? 
someone takes it?

Let’s take a break here and ponder why?

The reason will be discussed in details in 
the next lecture. Meanwhile, the next 2 
slides give a preview of “why”



If the input is a FP number, it will 
show:
- 1 sign bit: 0 for >= 0 and 1 for <=0

- 11 exponent bits

- 52 bits for the mantissa 
(which actually has 53 bits. 
The first bit is always 1 and 
needs not be stored here).

total is a 64-bit word –
shown here as 8 bytes

The 8 bytes can be 
arranged in 8x8 dot 
matrix display

Slide from next lecture



Problem 3 (bonus)
Find floating points or integers (easier) that have bits patterns representing the 
initials of your first and last name.

Example: 16,419,452,012,919,037,084 and 4,123,389,611,252,201,785 will 
give something. Check it out.

Below are illustrations of common patterns: each has a number. Find your 
“digital signature” with your name initials.

Slide from next lecture



Time to look at this again. We see 52 bits here for the mantissa. 

10 bits for negative exponent.
10 bits for positive exponent.
That means 11 bits for both.

We have 1 bit left. It is for the 
sign

Back to our current lecture…



Mantissa and Exponent
SCIENTIFIC REPRESENTATION OF NUMBERS



mantissa exponent save the hassle of all these zeros

electron mass and sun mass are 60 orders of magnitude different. But 
relatively speaking, which mass do we know “better” or more precise?



which tool would we 
want to use to 
measure this 
diamond?

The caliper has higher precision, as it can give us a finer, or more-digit 
reading of the size: precision means the ability to give high resolution, 
more significant digit reading.

We know the electron mass with more 
precision than the Sun mass: The number 
of significant digits (with respect of 
measurement uncertainty) of the 
mantissa is the determinant of precision. 
The exponent is not relevant.



Click open this tab of 
another APP.

Here, we test how the 
computer computes these four 
functions. The 1st one we test 
is sin(2 π n), where n is an 
integer from 0 – 1000.

We expect sin(2 π n)=0 for all 
n. But we see here that is not. 
The error gets worse with 
larger n.

Note that Mathematica
software precision gives 
correct results

This chart is known as power 
spectral density (PSD) plot. We’ll use 
it a lot later in the course.

These peaks 
mean the error 
occurs 
periodically with 
certain 
frequencies.



grab this slider, zoom in for a close look of 
the range n from 900-1000

2*960 PI SIN(B*C)
1920 3.1415927 -6.899758542289190E-13

Let’s look at this point n=960.

All three software yield comparable results   
-6.8987953.. x10-13, with plenty of digits for 
precision, but not accurate!

Note: Mathematica analytic calc
does yield correct result: 0.

This error is huge compared with machine epsilon and machine smallest number. 



To really see this problem, do HW 
problem 6



Problem 6
Calculate and plot y=sin(2 π n+x) for:

- n=0, 2000, 4000, 8000, 16000;

- x from -10^-11 to 10^-11

using any software you like, including Mathematica, but not the analytic 
(arbitrary precision) option. If you use Matlab, you can generate a C++ code 
and it is the same as writing in C++.

Discuss you results in terms of what you learn in this APP.

Also, plot this:   

𝑦𝑦𝑦𝑦 = sin 𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥 − 𝑛𝜋𝜋 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛2𝜋𝜋+𝑥𝑥
2𝜋𝜋

and compare with the above result, discuss.

floor() is a function that take the lower integral value of an integer. For 
example, floor(3.2)=3, which the integer immediately below 3.2. floor(4.8)=4. 
etc. One can also use the mod-function instead:

𝑦𝑦𝑦𝑦 = sin 𝑚𝑚𝑓𝑓𝑚𝑚(𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥, 𝑛𝜋𝜋)
if the software has this function that works reliably (some may not).



Before we get into this, you may wonder, why do we 
care about            𝑦𝑦 = sin 𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥 ?
What does that have to do with electrical engineering?

What does this remind you? An electromagnetic wave!

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓 How large is 𝑥𝑥

𝜆𝜆
? 



New Horizon uses X-band frequency, wavelength λ ~ 3.75 cm, 
to send images from Pluto which is at a distance x~ 7.5 billions 
km = 7.5*10?? cm? (you figure the ?? out).
What is the ratio 𝑥𝑥

𝜆𝜆
of its EM wave when it reaches Earth?

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓



The Globe is crisscrossed with million miles of optical fibers that 
conduct lightwave signals for the Internet and virtually all our 
communication needs.
Consider a lightwave with λ ~ 1 µm in a typical optical fiber 
short span of 100 km, what is the ratio 𝑥𝑥

𝜆𝜆
at the end of a span?

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓



Problem 6
Calculate and plot y=sin(2 π n+x) for:

- n=0, 2000, 4000, 8000, 16000;

- x from -10^-11 to 10^-11

Back to Prob. 6: it is not uncommon for us to write code: 
𝑦𝑦 = sin 𝑛𝜋𝜋 𝑥𝑥

𝜆𝜆
(or sin 𝑘𝑘𝑥𝑥 )

without thinking how large 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆

or 𝑘𝑘𝑥𝑥 can get.
The art of scientific/engineering coding is not to let the argument 
get out of hand for being too large (overflow) or too small 
(underflow). Hence, we use mod 𝑘𝑘𝑥𝑥, 𝑛𝜋𝜋 to ensure a small argument 
– or know where to re-choose the axis origin for the relevant 
problem.
But let’s say we are careless, do the HW and see what you get.



n=0
n=2000
n=4000
n=8000
n=16000

Example: this is what one gets with MATLAB

What are the problems here?



It can’t have 
enough precision, 
but at least, it 
tries to be 
accurate: close 
to the correct 
value in blue

machine 
precision problem

The two problems are different: precision and accuracy



n=0
n=2000
n=4000
n=8000
n=16000

Example: this is what one gets with MATLAB

The step quantization is due 
to the input limited 
precision

The precision error is 
magnified <- this is 
analogous to what is known 
as “feedback error”
We can also think of it as 
propagated & magnified 
errors: GIGO

But we see another troublesome type of error: systemic bias that makes the 
calculation increasingly inaccurate: even if we try to fix the quantization error by 

using a fitting line, we still have accuracy problem with a bias.
In the second part of problem 6, you will see that the bias can be removed.



Imagine you go to a showroom and step on these scales for sale. All are 
precise down to 0.1 lb. But they give readings differing by 10’s lbs as 
above! What can you say? 

At least 3, if not all are wrong. This means they are precise, but 
terribly inaccurate. (Well, may be the first one is the correct one?)

Inaccuracy in instruments – especially high precision, are usually caused 
by erroneous calibration or some incorrectly adjusted bias.

In empirical science, accuracy is defined as the degree that a measurement is 
close to the true value relative to uncertainty. Similarly in computing, accuracy
is determined by the magnitude of error: the discrepancy between a 
calculation and the known correct value (via analytical knowledge).



Click open this APP 
for problem 7 (any 
button)



Problem 7
Use the APP 1.0.3.1 on accuracy and precision to obtain the follow 
cases for each category: empirical measurements and numerical 
calculations. Show a case for:

- low accuracy, <= 0.5, low precision, <= 2.5 dB or LSB=bit 0

- high accuracy, =1, low precision,<= 1 dB or bit LSB=bit 0

- low accuracy<= 0.1, high precision>= 12 dB or LSB=bit 4

- high accuracy=1, high precision >= 12 dB or LSB=bit 4

Copy and paste for each case, labeled it properly with accuracy and 
precision. Do not mix cases of the two categories. Each category 
should have its own section.



Here, click on this and we test 
1/tan function (cot)

It should be infinite, but none is!
The error appears similar to sin 
function, which is to be expected 
since this is cos/sin.

However, what matters here is not 
just about the magnitude, but the 
sign: it alternates between +1 and -1: 
imagine if your calculation critically 
depends on the sign: a big error!

Let’s get back to this



Here, we zoom in a segment of the 
error, we see that it is not as random 
as it looks. In fact, the power spectral 
density of the sign (+,-) error has 
some special frequencies as shown 
here



Here, we test taking log of a large 
number.

We see only the error due to 
machine epsilon.
However, note that Mathematica
analytic result is again, correct.



Problem 7
Calculate and plot 𝑦𝑦 = 1

𝑁𝑁
𝑒𝑒log(𝑁𝑁) − 1 for 𝑁𝑁 = 10𝑛𝑛 where n is 

from 0 to 300. (why do we stop at 300? and not go to 400? at what 
value of n do you think we will be in trouble?)

This test is to check the exp of 
the log of a large number

Note how the relative error is 
magnified: the larger N is, the 
larger is the error.



-6.0000000000E-14

-4.0000000000E-14

-2.0000000000E-14

0.0000000000E+00

2.0000000000E-14

4.0000000000E-14

6.0000000000E-14

8.0000000000E-14

0 50 100 150 200 250 300 350

Test Exp(Log)

Example: this is what one gets with Excel

Although there are plenty 
of precision digits –the 
inaccuracy is due to the 
precision loss when we take 
the log and then, magnified 
with exponent.



A summary of what we learn
 Computing errors are inevitable and not as small or trivial as we 

might assume, especially when we neglect handling quantities at 
special values with significant consequence (underflow, overflow, 
non-zero when should be 0., unpredictable + or - sign , or finite 
when should be infinite).

 It’s better for a program to crash to let us know what’s wrong rather 
than give us a huge error without warning.

 The objective of the numerical methods is to learn how to obtain 
accurate and precise calculation results within certain acceptable 
limits: this is the tolerance of the calculation.

 When doing computation on a scientific/engineering problem, you 
must know or set specifications on tolerance of the results.

 Sanity check: test the computation on analytically known results to 
verify (sanity check) for algorithm possible errors.



wait, why we don’t see errors in those tests 
with Mathematica analytic calculation?

• Mathematica is a high-level software designed to 
overcome those common numerical computation errors 
to give us exact results (or as accurately and precisely 
possible). In fact, it can give us arbitrary precision as long 
as given sufficient processing power and memory.

• It does this with software that has “built-in” analytic rules 
like our knowledge of mathematics. Its origin is from 
language for symbolic manipulation such as Lisp. 
Macsyma/Maxima is also similar.



Examples



If so, why don’t we just use Mathematica and skip 
learning about these computation errors?

• There are a lot more about numerical methods and 
scientific/engineering computing than just numerical errors.

• Mathematica, as smart as it is, still can’t fix seriously wrong 
algorithms. In this course, we learn about efficient, reliable 
algorithms for accurate and precise computation.

• For serious number crunching, Mathematica, like virtually 
all other software, still relies on machine dedicated floating 
point unit (FPU) operations for speed. It is generally slower 
to run software-based exact, analytic-computing in 
Mathematica.

• In fact, MATLAB can be used for high-speed large array 
processing and Mathematica is used for other capabilities.



The goal is NOT to force a machine to increase its 
precision and accuracy to satisfy the way we code. 
It is just a tool.

The goal is to know how to use it, and write codes 
so that its precision and accuracy are well within 
our tolerance. This is done by writing smart, 
robust, error-proof algorithms.
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