
ECE3340
Introduction to the limit of computer
numerical capability – precision and accuracy
concepts
PROF. HAN Q. LE

…~ 99 – 99.9% of computing numerical
errors are likely due to user’s coding
errors (syntax, algorithm)…

and the tiny remaining portion may be due
to user’s lack of understanding how
numerical computation works…

Hope this course will help you on this
problems

Computing errors

Homework/Classwork 1
CHECK OUT THE PERFORMANCE OF YOUR COMPUTER

Click open this APP

Click to ask your machine the
smallest number it can handle
(this example shows 64-bit x86
architecture)

Log base 2 of the number

Do the same for the largest
number

Click to ask the computer the
smallest relative difference
between two number that it
can tell apart. This is called

machine epsilon

If you use an x86 64-bit CPU, the above is what you get.

HWHW

CW

HW-Problem 1
Use any software (C++, C#, MATLAB, Excel,…) but not
Mathematica (because it is too smart and can handle the test
below) to do this:

1. Let’s denote xmax be the largest number your computer can
handle in the APP test. Let x be a number just below xmax ,
such as ~0.75 xmax. (For example, I choose x=1.5*10^308).
Double it (2*x) and print the result.

2. Let xmin be your computer smallest number. Choose x just
above it. Then find 0.5*x and print output.

Enter a number Column A*2. Column A/2.
4 8 2
5 10 2.5

1.50E+308 #NUM! 7.50E+307
6.00E-308 1.20E-307 3.00E-308
5.00E-308 1.00E-307 2.50E-308
4.00E-308 8.00E-308 0.00E+00

Here is an example what happens in Excel:

Number just slightly less than
my computer xmax

Number just slightly more than
my computer xmin

You should get similar results in other software and language.

Excel error: instead of giving
the correct answer 3*10^308,
it gives error output. This is

caused by overflow

Excel fails: instead of giving me the correct answer:

2*10^-308, it “flushes to zero” by giving zero
output.

This is caused by underflow : a result that is too
small for the computer to handle, it sets as zero.

Note the three key
concepts
highlighted in
yellow

HW-Problem 2
Use any software (C++, C#, MATLAB, Excel,…) but not
Mathematica (because it is too smart and can handle the test
below) to do this. Let denote eps (for ε) be the smallest relative
difference that your computer can handle – aka machine
epsilon (it is 2.22*10^-16 on my machine, for example).

Then, generate an array of 5-20 elements (your choice), with
values ranging from above your computer eps to below eps.
Denote this array as x array.

Then, add 1 to x array, denote it as y: y=1+x;

Then, define x0 array: x0=y-1;

Print out all 3 arrays: x, y, and x0 and compare. Is your x0 the
same as x?

1
small

number
column A+B Column C-A

1 5.000E-15 1.00000000000001000000E+00 5.10702591327572000000E-15
1 4.000E-15 1.00000000000000000000E+00 3.99680288865056000000E-15
1 3.000E-15 1.00000000000000000000E+00 3.10862446895044000000E-15
1 2.000E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.900E-15 1.00000000000000000000E+00 1.99840144432528000000E-15
1 1.800E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.700E-15 1.00000000000000000000E+00 1.77635683940025000000E-15
1 1.600E-15 1.00000000000000000000E+00 0.00000000000000000000E+00
1 1.500E-15 1.00000000000000000000E+00 0.00000000000000000000E+00

Here is an example what happens in Excel:

ε array y=1+ ε
array

ε0=y-1
array

Notice that ε and ε0 are not
equal as expected.

what happens right here? why ε0
cannot gradually go from 1.776*10^-15
to ~ 1.6*10^-15 as expected, but jumps
to zero?What we see here is the limit of

machine precision which

causes the inaccuracy observed.

imagine this: there is an investment fund
containing gazillion dollars. Asset= 1 gazillion

You add to the account your
saving of $1 mil, because it
promises 50% profit return
in 1 year

but the investment company uses
Excel on 16-bit CPU and your
portion is below its precision,
hence, it flushes to zero

At least, it has a lot of zeros!

Hence, after one year, your
account is deposited with
this amount

$

anyway!

All is not lost, the company
kindly sent you a card…

A different kind of precision problem:
Sometimes, digits are lost on the other
side (overflow)

Problem 3
You don’t have to do any calculation, only discuss what you think
here:

1. Describe what you observe from doing problems 1 and 2 above
and what is your thought on the results? (in other words, try your
best to explain what’s wrong).

2. What limits a computer to have a maximum and minimum
magnitude for numbers? (this is limited by machine processor
and not by software like Mathematica).

3. If a computer can handle a number as small as 3*10^-308, why
can’t it handle a difference between 1 and 1+eps when eps is
1*10^-16, which is >> than the smallest number 10^-308 that it
can handle?

$
this problem is aka “how
your million dollars
flushed to zero”

Click open this tab of
another APP.

Use slider to input a
number

Click to choose how many
digits you want to see
(decimal level of precision)

This is the actual number
value inside the computer, not
what you think you enter.

This is the error between what you want
to input (for example. 0.3 here), and what
it really is (0.2999 whatever…). Why can’t
it just record something as simple as 0.3?

Problem 4
Use the APP above to enter 3-5 non-zero numbers (the example is 0.3,
but you should enter a set of unique numbers for yourself, e. g. 0.155,
0.291, 0.43, 0.68, 0.912 don’t copy this, please – pick your own
unique values). Record what the actual numbers are, and the errors.

1. Make a table (like in Excel) a column of numbers you enter, a
column of their actual values, and a column of ratio
abs(error)/number – this is called relative error (for example,
ratio abs(3.7*10^-17)/0.3 = 1.23*10^-16)

2. Enter a few values that are multiple of 1/2^n, where n=1, 2, 3. For
example 0.125, 0.375, etc. Do you see any errors?

3. Write why you think there are errors? Why the magnitude of
relative errors is ~ the machine epsilon you find in APP 1. Why do
you see errors in question 1, but the errors in question 2 are zero
(which means the numbers inside the computer are exact).

Click this to see an error plot. The
input varies from 1+0*10^-16 to
1+10^10-16 = 1+1*10^-15

Instead of giving us a linear
straight line like the blue line, the
computer actual values are
quantized into discrete step values
(red curve). Why?

you deposited
$1 mil

The computer
can’t tell the
difference and
hence, it returns
to you zero.

machine precision problem

Problem 5
Calculate or estimate the quantized step size from the APP for your
computer (not this demonstrated computer – although very likely
you have exactly the same result if you have x86 64-bit CPU).

Then, approximate your step size as 1
2𝑛𝑛

and obtain the integer
value n, (you can take log2 of the step size to get -n). This is the
number of significant bits of your machine floating point
mantissa.

From here on,
you can use
Mathematica.
Example of
the code is
given here.

We have 52- bit mantissa

wait a minute, I thought the machine is 64-
bit. Why the mantissa has only 52 bits?
what happens to the other 12 missing bits?
someone takes it?

Let’s take a break here and ponder why?

The reason will be discussed in details in
the next lecture. Meanwhile, the next 2
slides give a preview of “why”

If the input is a FP number, it will
show:
- 1 sign bit: 0 for >= 0 and 1 for <=0

- 11 exponent bits

- 52 bits for the mantissa
(which actually has 53 bits.
The first bit is always 1 and
needs not be stored here).

total is a 64-bit word –
shown here as 8 bytes

The 8 bytes can be
arranged in 8x8 dot
matrix display

Slide from next lecture

Problem 3 (bonus)
Find floating points or integers (easier) that have bits patterns representing the
initials of your first and last name.

Example: 16,419,452,012,919,037,084 and 4,123,389,611,252,201,785 will
give something. Check it out.

Below are illustrations of common patterns: each has a number. Find your
“digital signature” with your name initials.

Slide from next lecture

Time to look at this again. We see 52 bits here for the mantissa.

10 bits for negative exponent.
10 bits for positive exponent.
That means 11 bits for both.

We have 1 bit left. It is for the
sign

Back to our current lecture…

Mantissa and Exponent
SCIENTIFIC REPRESENTATION OF NUMBERS

mantissa exponent save the hassle of all these zeros

electron mass and sun mass are 60 orders of magnitude different. But
relatively speaking, which mass do we know “better” or more precise?

which tool would we
want to use to
measure this
diamond?

The caliper has higher precision, as it can give us a finer, or more-digit
reading of the size: precision means the ability to give high resolution,
more significant digit reading.

We know the electron mass with more
precision than the Sun mass: The number
of significant digits (with respect of
measurement uncertainty) of the
mantissa is the determinant of precision.
The exponent is not relevant.

Click open this tab of
another APP.

Here, we test how the
computer computes these four
functions. The 1st one we test
is sin(2 π n), where n is an
integer from 0 – 1000.

We expect sin(2 π n)=0 for all
n. But we see here that is not.
The error gets worse with
larger n.

Note that Mathematica
software precision gives
correct results

This chart is known as power
spectral density (PSD) plot. We’ll use
it a lot later in the course.

These peaks
mean the error
occurs
periodically with
certain
frequencies.

grab this slider, zoom in for a close look of
the range n from 900-1000

2*960 PI SIN(B*C)
1920 3.1415927 -6.899758542289190E-13

Let’s look at this point n=960.

All three software yield comparable results
-6.8987953.. x10-13, with plenty of digits for
precision, but not accurate!

Note: Mathematica analytic calc
does yield correct result: 0.

This error is huge compared with machine epsilon and machine smallest number.

To really see this problem, do HW
problem 6

Problem 6
Calculate and plot y=sin(2 π n+x) for:

- n=0, 2000, 4000, 8000, 16000;

- x from -10^-11 to 10^-11

using any software you like, including Mathematica, but not the analytic
(arbitrary precision) option. If you use Matlab, you can generate a C++ code
and it is the same as writing in C++.

Discuss you results in terms of what you learn in this APP.

Also, plot this:

𝑦𝑦𝑦𝑦 = sin 𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥 − 𝑛𝜋𝜋 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛2𝜋𝜋+𝑥𝑥
2𝜋𝜋

and compare with the above result, discuss.

floor() is a function that take the lower integral value of an integer. For
example, floor(3.2)=3, which the integer immediately below 3.2. floor(4.8)=4.
etc. One can also use the mod-function instead:

𝑦𝑦𝑦𝑦 = sin 𝑚𝑚𝑓𝑓𝑚𝑚(𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥, 𝑛𝜋𝜋)
if the software has this function that works reliably (some may not).

Before we get into this, you may wonder, why do we
care about 𝑦𝑦 = sin 𝑛𝑛𝑛𝜋𝜋 + 𝑥𝑥 ?
What does that have to do with electrical engineering?

What does this remind you? An electromagnetic wave!

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓 How large is 𝑥𝑥

𝜆𝜆
?

New Horizon uses X-band frequency, wavelength λ ~ 3.75 cm,
to send images from Pluto which is at a distance x~ 7.5 billions
km = 7.5*10?? cm? (you figure the ?? out).
What is the ratio 𝑥𝑥

𝜆𝜆
of its EM wave when it reaches Earth?

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓

The Globe is crisscrossed with million miles of optical fibers that
conduct lightwave signals for the Internet and virtually all our
communication needs.
Consider a lightwave with λ ~ 1 µm in a typical optical fiber
short span of 100 km, what is the ratio 𝑥𝑥

𝜆𝜆
at the end of a span?

𝐸𝐸 = A sin 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆
− 𝑓𝑓𝑓𝑓

Problem 6
Calculate and plot y=sin(2 π n+x) for:

- n=0, 2000, 4000, 8000, 16000;

- x from -10^-11 to 10^-11

Back to Prob. 6: it is not uncommon for us to write code:
𝑦𝑦 = sin 𝑛𝜋𝜋 𝑥𝑥

𝜆𝜆
(or sin 𝑘𝑘𝑥𝑥)

without thinking how large 𝑛𝜋𝜋 𝑥𝑥
𝜆𝜆

or 𝑘𝑘𝑥𝑥 can get.
The art of scientific/engineering coding is not to let the argument
get out of hand for being too large (overflow) or too small
(underflow). Hence, we use mod 𝑘𝑘𝑥𝑥, 𝑛𝜋𝜋 to ensure a small argument
– or know where to re-choose the axis origin for the relevant
problem.
But let’s say we are careless, do the HW and see what you get.

n=0
n=2000
n=4000
n=8000
n=16000

Example: this is what one gets with MATLAB

What are the problems here?

It can’t have
enough precision,
but at least, it
tries to be
accurate: close
to the correct
value in blue

machine
precision problem

The two problems are different: precision and accuracy

n=0
n=2000
n=4000
n=8000
n=16000

Example: this is what one gets with MATLAB

The step quantization is due
to the input limited
precision

The precision error is
magnified <- this is
analogous to what is known
as “feedback error”
We can also think of it as
propagated & magnified
errors: GIGO

But we see another troublesome type of error: systemic bias that makes the
calculation increasingly inaccurate: even if we try to fix the quantization error by

using a fitting line, we still have accuracy problem with a bias.
In the second part of problem 6, you will see that the bias can be removed.

Imagine you go to a showroom and step on these scales for sale. All are
precise down to 0.1 lb. But they give readings differing by 10’s lbs as
above! What can you say?

At least 3, if not all are wrong. This means they are precise, but
terribly inaccurate. (Well, may be the first one is the correct one?)

Inaccuracy in instruments – especially high precision, are usually caused
by erroneous calibration or some incorrectly adjusted bias.

In empirical science, accuracy is defined as the degree that a measurement is
close to the true value relative to uncertainty. Similarly in computing, accuracy
is determined by the magnitude of error: the discrepancy between a
calculation and the known correct value (via analytical knowledge).

Click open this APP
for problem 7 (any
button)

Problem 7
Use the APP 1.0.3.1 on accuracy and precision to obtain the follow
cases for each category: empirical measurements and numerical
calculations. Show a case for:

- low accuracy, <= 0.5, low precision, <= 2.5 dB or LSB=bit 0

- high accuracy, =1, low precision,<= 1 dB or bit LSB=bit 0

- low accuracy<= 0.1, high precision>= 12 dB or LSB=bit 4

- high accuracy=1, high precision >= 12 dB or LSB=bit 4

Copy and paste for each case, labeled it properly with accuracy and
precision. Do not mix cases of the two categories. Each category
should have its own section.

Here, click on this and we test
1/tan function (cot)

It should be infinite, but none is!
The error appears similar to sin
function, which is to be expected
since this is cos/sin.

However, what matters here is not
just about the magnitude, but the
sign: it alternates between +1 and -1:
imagine if your calculation critically
depends on the sign: a big error!

Let’s get back to this

Here, we zoom in a segment of the
error, we see that it is not as random
as it looks. In fact, the power spectral
density of the sign (+,-) error has
some special frequencies as shown
here

Here, we test taking log of a large
number.

We see only the error due to
machine epsilon.
However, note that Mathematica
analytic result is again, correct.

Problem 7
Calculate and plot 𝑦𝑦 = 1

𝑁𝑁
𝑒𝑒log(𝑁𝑁) − 1 for 𝑁𝑁 = 10𝑛𝑛 where n is

from 0 to 300. (why do we stop at 300? and not go to 400? at what
value of n do you think we will be in trouble?)

This test is to check the exp of
the log of a large number

Note how the relative error is
magnified: the larger N is, the
larger is the error.

-6.0000000000E-14

-4.0000000000E-14

-2.0000000000E-14

0.0000000000E+00

2.0000000000E-14

4.0000000000E-14

6.0000000000E-14

8.0000000000E-14

0 50 100 150 200 250 300 350

Test Exp(Log)

Example: this is what one gets with Excel

Although there are plenty
of precision digits –the
inaccuracy is due to the
precision loss when we take
the log and then, magnified
with exponent.

A summary of what we learn
 Computing errors are inevitable and not as small or trivial as we

might assume, especially when we neglect handling quantities at
special values with significant consequence (underflow, overflow,
non-zero when should be 0., unpredictable + or - sign , or finite
when should be infinite).

 It’s better for a program to crash to let us know what’s wrong rather
than give us a huge error without warning.

 The objective of the numerical methods is to learn how to obtain
accurate and precise calculation results within certain acceptable
limits: this is the tolerance of the calculation.

 When doing computation on a scientific/engineering problem, you
must know or set specifications on tolerance of the results.

 Sanity check: test the computation on analytically known results to
verify (sanity check) for algorithm possible errors.

wait, why we don’t see errors in those tests
with Mathematica analytic calculation?

• Mathematica is a high-level software designed to
overcome those common numerical computation errors
to give us exact results (or as accurately and precisely
possible). In fact, it can give us arbitrary precision as long
as given sufficient processing power and memory.

• It does this with software that has “built-in” analytic rules
like our knowledge of mathematics. Its origin is from
language for symbolic manipulation such as Lisp.
Macsyma/Maxima is also similar.

Examples

If so, why don’t we just use Mathematica and skip
learning about these computation errors?

• There are a lot more about numerical methods and
scientific/engineering computing than just numerical errors.

• Mathematica, as smart as it is, still can’t fix seriously wrong
algorithms. In this course, we learn about efficient, reliable
algorithms for accurate and precise computation.

• For serious number crunching, Mathematica, like virtually
all other software, still relies on machine dedicated floating
point unit (FPU) operations for speed. It is generally slower
to run software-based exact, analytic-computing in
Mathematica.

• In fact, MATLAB can be used for high-speed large array
processing and Mathematica is used for other capabilities.

The goal is NOT to force a machine to increase its
precision and accuracy to satisfy the way we code.
It is just a tool.

The goal is to know how to use it, and write codes
so that its precision and accuracy are well within
our tolerance. This is done by writing smart,
robust, error-proof algorithms.

	ECE3340�Introduction to the limit of computer numerical capability – precision and accuracy concepts
	Slide Number 2
	Homework/Classwork 1
	Slide Number 4
	HW-Problem 1
	Slide Number 6
	HW-Problem 2
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Problem 3
	Slide Number 13
	Problem 4
	Slide Number 15
	Problem 5
	Slide Number 17
	Slide Number 18
	Problem 3 (bonus)
	Slide Number 20
	Mantissa and Exponent
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Problem 6
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Problem 6
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Problem 7
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Problem 7
	Slide Number 42
	A summary of what we learn
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

