
ECE3340
Polynomials, Zeroes and Poles, Roots and
Contours
PROF. HAN Q. LE

• We have seen example of Laplace transformed circuits;
where the transfer function can be described as a
polynomial rational

• The system behavior is determined by the zeroes and
poles of the transfer function, i. e. the roots of the
numerator and denominator polynomials

• Similarly, many problems in science/engineering are to
find solutions to equations:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 𝑥𝑥 = 𝑟𝑟𝑠𝑠𝑟𝑟ℎ𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙(𝑥𝑥)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 𝑥𝑥 − 𝑟𝑟𝑠𝑠𝑟𝑟ℎ𝑙𝑙 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 𝑥𝑥 = 0

• This is known as “find zero” or “find root” of an
equation.

• A system of equations has many equations and many
unknowns to be solved.

How to compute roots, zeroes,
polynomials and all that…numerically

 Polynomials (now that’s the easy part): Horner’s method (or
some similar variation) is well know and straightforward for
minimizing computation steps and preserving precision.

 Finding roots: very common in scientific/engineering problems. It is
more general than just for polynomials but also for functions
requiring complex computation (most real world application
functions cannot be expressed analytically in closed form but only via
numerical computation).

 Extensive, rigorous algorithms have been developed. The algorithms
can range from very simple all the way to complex and very involved
mathematically (especially for complex roots).

 Widely available software have been developed with tried and true
robust, efficient algorithms for these needs.

What does this mean?
• Do I need to know the nitty-gritty details of these algorithms?

• Not essential, but it is good to have a conceptual
understanding.

• Do I need to write my own codes of finding roots?
• Only for coding exercise. Better to use many readily available

codes (free in public domain). Some commercial software have
more sophisticated algorithms to handle difficult cases (such
as highly oscillatory functions).

• So, I don’t really need to learn anything about these, but just use
commercial software?

• Not quite. There are certain things about potential errors or
precision in challenging cases that we should be aware and can’t
just use the software blindly.

Horner’s method & illustration
• Numerically calculate polynomial with minimized steps and

memory (important only in the old days of computer).
• Implicitly implemented in advanced software by the order of

computation via bracketing. (e. g. x (x (x(a x+b)+c))+d …)
• a purpose of higher intelligence software is to eliminate trivial,

tedious and repetitive do-loops (higher command such as Nest)
• Polynomial handling utilities are implemented in many

advanced software (Mathematica and MATLAB).

Common algorithms for finding roots
of real function

• Finding zeroes of a polynomial is a subclass of general root finding.
Specific algorithms for complex polynomial roots have been
developed (and still being developed): “solve” vs. “find root”

• General root finding has a long history (not exhaustive):
• Bisection search method & False-Position method
• Fixed-Point iteration (limited applications)
• Newton-Raphson & Secant method (popular)

• Quadratic interpolation/extrapolation method
• Brent’s method (root bracketing, also common for flexibility)
• Extension to multiple roots with methods above

• How efficient each method is depends on the specific problems
• All scientific/engineering software have comparable root finding

functions, e. g. fzero (MATLAB), FindRoot (Mathematica).

Root finding illustrations
 Bisection & False position

 Newton-Raphson & Secant

Root finding illustrations

 Example of adaptive & flexible algorithm: FindRoot function
in Mathematica, (including with Brent’s root bracketing
method).

 Use set precision option and set accuracy goal

Bottom line question: should I use commercial
root finding functions or code my own?

• Everyone (once in the their life) wrote a FORTRAN, BASIC, or C++
function for finding roots. It’s for exercise, but commercial software
have been thoroughly debugged and tested.

• Most software allow custom precision and accuracy. (trade-off of
precision/accuracy and computation time).

• Software that compute zeroes of well-known analytic functions are
also available (e. g. Bessel, Airy, Zeta zeroes in Mathematica).

• It’s good to be aware how various algorithms work, but coding one for
own use is ONLY for some unique case and unique need.

• Hence, for most practical purpose, one only needs to understand how
to use various software.

• It is the set-up of the problem that is critical, not the software
itself: Set up the problem in such a way that common algorithms work
best, such as avoiding singularity, highly oscillatory behavior, etc.

Overarching considerations in finding
roots

 Must have a general understanding of the behavior of the
function(s):
 does it have root(s) within certain known or expected range?
 if many roots, how are the roots distributed?
 are there singularities near the roots? or is the function highly

oscillatory near the roots?

Overarching considerations in finding
roots

 If the function is not well-behaved near the roots, transform the
problem to obtain a well-behaved function: this is actually often
the essence of a problem.

 Once properly transformed, various algorithms discussed above
can be applied and they generally work quite well.

 Bottom line: one should not find roots “blindly.” Must analyze to
understand the function and know what to expect for the roots.

Transform the problem such that the roots are properly distributed, bracketable, and
can be found

Classwork: example of oscillatory
multiple root function

https://0e63f0f2dcef46400048260bf5beca825c2f43dc.googledrive.com/host/0B1XNdZB1lsFLZi1yNS0wN1Z2RW8/homework/ECE3340-CW_Feb_29.pdf
https://0e63f0f2dcef46400048260bf5beca825c2f43dc.googledrive.com/host/0B1XNdZB1lsFLZi1yNS0wN1Z2RW8/homework/ECE3340-CW_Feb_29.pdf

Contours, zeroes and poles

Equipotential surface

Electrostatic field lines

Contour is essentially partial find-root:

𝑙𝑙 𝑥𝑥,𝑦𝑦, 𝑧𝑧, … =0

• Generate a search mesh
• Calculate points, e. g. {x,y} that satisfy the equation (find

root) near a node.
• Join points and interpolate if necessary to obtain a

smooth curve.

See exercise in generating
contours for complex root
problems.

Example application: analysis of Laplace
transformed open loop transfer function

zeroes poles

Phase contours Amplitude contours

root locus

root locus

https://www.youtube.com/watch?v=cLHXgAKL
xuo

https://www.youtube.com/watch?v=w2itwFJC
gFQ&ebc=ANyPxKobWyIQ0HVSJi_RnKRqwE7p
PVQMxBRwJxURdSPwgl1cUESlHONKy_La0GpTg
0DwlFiUnYVXb8SsV-ROE6k0CYZQ6ZK4dQ

https://www.youtube.com/watch?v=kOEihjOwMAI

https://www.youtube.com/watch?v=cLHXgAKLxuo
https://www.youtube.com/watch?v=cLHXgAKLxuo
https://www.youtube.com/watch?v=w2itwFJCgFQ&ebc=ANyPxKobWyIQ0HVSJi_RnKRqwE7pPVQMxBRwJxURdSPwgl1cUESlHONKy_La0GpTg0DwlFiUnYVXb8SsV-ROE6k0CYZQ6ZK4dQ
https://www.youtube.com/watch?v=w2itwFJCgFQ&ebc=ANyPxKobWyIQ0HVSJi_RnKRqwE7pPVQMxBRwJxURdSPwgl1cUESlHONKy_La0GpTg0DwlFiUnYVXb8SsV-ROE6k0CYZQ6ZK4dQ
https://www.youtube.com/watch?v=kOEihjOwMAI
https://www.youtube.com/watch?v=kOEihjOwMAI
https://www.youtube.com/watch?v=w2itwFJCgFQ&ebc=ANyPxKobWyIQ0HVSJi_RnKRqwE7pPVQMxBRwJxURdSPwgl1cUESlHONKy_La0GpTg0DwlFiUnYVXb8SsV-ROE6k0CYZQ6ZK4dQ
https://www.youtube.com/watch?v=kOEihjOwMAI

An analog PID controller
Vo/Vi= K (1+t1/t2+1/(t2 s)+t1 s)

G[s]=Kp+Ki/s+Kd s

https://www.youtube.com/watch?v=kOEihjOw
MAI

Open loop transfer function

Poles: zeroes of denominator
(s=0(2) and s=-b/m)

Zeros: zeroes of numerator

P I D

Car (mass m) with
air drag coeff. b

Root Locus Analysis and Design
zeroes (2) poles (2)

• Zeroes and poles: limiting points of root locus
• Pole in this case is a property of the car & drag coefficient
• Zeroes of the PID controller (relative to poles) determine root locus.

• Root locus: for designing response function (speed vs. damping, etc.)
• Contours: analysis of amplitude (constant gain curve) and phase.

Phase contours of steepest descent (π-phase) between zeroes and
poles are root loci.

Position control Proportional

Derivative

Integral

P
I

D

Net

https://0e63f0f2dcef46400048260bf5beca825c2f43dc.googledrive.com/host/0B1XNdZB1lsFLZi1yNS0wN1Z2RW8/classnotes/lect_set_6/carchase0.gif
https://0e63f0f2dcef46400048260bf5beca825c2f43dc.googledrive.com/host/0B1XNdZB1lsFLZi1yNS0wN1Z2RW8/classnotes/lect_set_6/carchase0.gif
https://0e63f0f2dcef46400048260bf5beca825c2f43dc.googledrive.com/host/0B1XNdZB1lsFLZi1yNS0wN1Z2RW8/classnotes/lect_set_6/carchase0.gif

Human brain natural controller: example: braking

Summary (takeaways)
 Root finding, polynomial zeroes and poles, and contours

are common and ubiquitous in scientific engineering
problems.

 Extensive algorithms have been developed and
implemented in high-level application software utilities.

 However, most software packages are developed for
general use, applicable to well-defined, well-behaved
problems.

 The essence of computation involved these things is to
formulate the problem such that these algorithms work
best and yield desired accurate, precise results.

know how to use them smartly

	ECE3340�Polynomials, Zeroes and Poles, Roots and Contours
	Slide Number 2
	How to compute roots, zeroes, polynomials and all that…numerically
	Slide Number 4
	Horner’s method & illustration
	Common algorithms for finding roots of real function
	Root finding illustrations
	Root finding illustrations
	Slide Number 9
	Overarching considerations in finding roots
	Overarching considerations in finding roots
	Classwork: example of oscillatory multiple root function
	Contours, zeroes and poles
	Slide Number 14
	Slide Number 15
	Example application: analysis of Laplace transformed open loop transfer function
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Root Locus Analysis and Design
	Slide Number 23
	Slide Number 24
	Summary (takeaways)

