ECE3340 Review of Numerical Methods for Fourier Transform Applications PROF. HAN Q. LE

Note: PPT file is the main outline of the chapter topic – associated Mathematica file(s) contain details and assignments

Outline

- 1. Introduction: concept of spectrum and periodic phenomena
- 2. Review of Fourier transform
- 3. Review of Fourier analysis
- 4. Numerical method: FFT
- 5. Applications in linear time-invariant system and signal processing

Introduction: spectrum concept, periodic phenomena

Power from the Sun

power(W)

wavelength

Wellenlänge

sichtbares

Licht

Visible light

IR

UV

Where does solar spectrum (or solar power spectral density) matter?

Why do most plants look green?

Common lighting spectra

WAVELENGTH (nanometers)

... what, exactly, is a spectrum?

A type spectrum that we can't live without...

2.4 GHz band

You are depending on it right now in this class...

This is a spectrum. Except it is not RF power vs. frequency, but RF power vs. wifi source. (spectrum in the broad sense).

Below are examples of PC-based wifi spectrum analyzer apps (but not as accurate and sensitive as hardware-based RF spectrum analyzer)

🍘 Acrylic	Wi-Fi Ho	me	GO Pr	o f	g• ¥	in						
SSID	MAC A	ddres	RSSI	Chan	802.11	Max Speed	WEP	W	PA	WPA2	WPS	Vendo
WLAN_XY	60:34:40:	69:02:48	-35 🚄	6	b, g, n	216.7 Mbps				MGT-CCMP		ASUSTek
5b4d2d	AP Sb4d2d	í	-80 🛃	11	b, g, n	144.4 Mbps		PSK-(TKIP	(CCMP)	PSK-(TKIP[CCMF	P) 1.0	PEGATR
famalsu	82:41:36:	0C14C1A0	-78 2	12	b, g, n	144.4 Mbps		DOX (THE	Income the second	PSK-CCMP PSK-CCMP	00	Testherics
WebSTAR	AP WebSTJ	3	-80 -1	ĩ	b, g, n	54 Mbra	SharedKey	Pak-Ukir	(CCMP)	PSK-(IKIPJCCMI		ASLISTel
SERGIO	AP SERGIO		-66 -1	3	ban	130 Mbps		PSK-(TK)	(CCMP)	PSK-(TKIPICCM)	9 1.0	Hitron T
WLAN_B3	40:4A:03:	86:86:17	-85 2	1	b, g	54 Mbps		PSK-TICIP				ZyXEL C
HACKERS AHEAD		50:35:83	-47 /		b.g	54 Mbps				PSK-CCMP		
RodMos	00:26:24:	CD: D4: D4	-80 🖂	1	b. g	54 Mbps		PSK-(TKIP	(CCMP)	PSK-(TKIP[CCMF	P)	Thomso
BURLINGTON	70:63:94:	SA:15:80	-81 2	6	b, g, n	144.4 Mbps		PSK-(TK)F	(CCMP)	new manifesta		
WIRE6969	E8:DE:27:	CD:51:88	-74	1+5	b, g, n	300 Mbps		PSK-(TKIP	(CCMP)	PSK-(TKIP/CCMP	P) 1.0	TP-UNK
CRS-27BA	14:89:68	FD 27 CT		- X -	baa	270 Mbps		PSK-(TK)E	ICCMP)	Instal-Unit-Perio	1.0	HUAWE
wificlientesR	6A 23 8C	79 06 37	-85 /	6	ban	144.4 Mbps		MGT-(TK	PICCMP	MGT-(TKIPICCM	(P)	10,0111
JAZZTEL_uhvf	64:22:28	84:85:70	-85.4	9	b, g, n	130 Mbps		PSK-CCN	IP	PSK-CCMP		zte corp
Signal Strength Network Qualit 2402 2412 2422		by 2	4GHz AP	Channels	SGHz APs Ch	annels						
2402		E	24	14	2442	2452	246	2	2472	2484	1	2494
2402	1 2	1	4 5	4	2442	2452	24	2 12	2472	2484		2494
2402	1 2	3	4 5	6	2442	2452 8 9	244 10 11	12	2472	2484		2494 Ionth America
2432	1 2	3 1/1	4 5	6 4/4	2442	2452 8 9 1/1	244 10 11 3/3	1 12	2472	2484		2494 Ionth America Europe/Asia 02.11 Speci
2402	1 2	3	4 5	6 4/4	7	2452 8 9 1/1	244 10 11 3/3	12	2472	2484		2494 Iorth Americo Europe/Asia 02.11 Spec
HACKEI	1 2 645 RS AHEAD	3	4 5	6 4/4	2442	2452 8 9 1/1	244 10 11 3/1	12	13	2484		2494 Iosth Americ Europe/Asia 02.11 Spec
HACKEI	1 2 6/6 RS AHEAD	3	4 5	6 4/4	7	2452 8 9 1/1	244 10 11 3/2	12	13	2484		2494 Iorth America Europe/Asia 02.11 Spect
HACKE	1 2 6/6 RS AHEAD	3	4 1	6 4/4	7	2452 8 9 1/1	248 10 11 3/1	12	13	2484		2494 Iorth America Europe/Asia 02.11 Spect 47
HACKET	1 2 645 RS AHEAD	3	4 1	6 4/4	2442	2452 8 9 1/1	248 10 11 3/1	12	2472	2486		2494 Ionth America Europe/Anno 02.111 Spect
HACKER	1 2 66 RS AHEAD	3	4 1	6 4/4	2442	2452 8 9 1/1	248 10 11 3/1	12	2472	2486		2494 Ionth Americo Europe/Asia 02.111 Spect
	1 2 66 RS AHEAD	3		6 4/4	7	2452 8 9 1/1	248 10 11 32	12	13	248		2494 Iorth America Europe/Aare 02.111 Spect

... what else can have spectrum (or spectra)?

Android, iOS apps for audio spectrum analyzer

SCIENTIFIC REPORTS

Article | OPEN | Published: 18 July 2017

Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment

Biophony

recordings taken throughout the Hauraki Gulf.

Marine environment sound spectrum (power spectral density)

Figure 2: The sonobuoys detected a variety of forms in FM (frequency modulated) calls of Antarctic blue whales within the aggregation. The most common call types are to the left of the spectrogram. (Photo: Brian Miller)

http://www.antarctica.gov.au/magazine/2011-2015/issue-28-june-2015/science/acoustic-technology-provides-insights-into-blue-whale-behaviour

A closely related concept of spectrum: spectrogram

In Mathematica, Fourier[] would generate an array for us to calculate the spectrum sweep it as a function of time. We have a time-dependent spectrum, or spectrogram.

... what else can have spectrum (or spectra)?

any sequential or serial, or ordered structure numerical data:

- time-series or temporal signals
- spatial signal such as images (Fourier optics)

Earth, Planets and Space July 2011, 63:62 | <u>Cite as</u>

The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake

1 2

3 4 5 6 7 8 9

Fig. 3.

Upper panel: two filtered slant TEC time series. Bottom panel: Corresponding spectrograms. (a) For station 0979 observing satellite 15. It shows the primary gravito-acoustic pulse and two signals that oscillates with frequencies close to the two fundamental acoustic resonance frequencies ($_{o}S_{29}$ and $_{o}S_{36}$) at ~3.7 and ~4.4 mHz. (b) For station 0180 observing satellite 22. It shows a signal that oscillates with a dominant frequency of ~1.8 mHz.

Observation of Earth natural acoustic resonance. We can say the Earth has an extreme deep voice, 3.7 and 4.4 mHz. How long is one period of these resonances?

Spectra can tell a lot about an object natural frequencies and properties

Some examples of resonances of natural frequencies

breaking a wine glass using resonance iflamenko • 1.1M views • 12 years ago

oscillating a wine glass by playing sound at its resonance frequency.

Bridge Resonance Helio Takai • 55K views • 9 years ago

Tacoma Narrows Bridge destroyed by resonance.

Corde de melde Frédéric Louradour • 103K views • 11 years ago Melde.

Chladni Plates Harvard Natural Sciences Lecture Demonstrations Four centrally mounted brass plates are driven into sprinkled on the plates helps ...

Hewitt-Drew-it! PHYSICS 116. Atomic Spectra Marshall Ellenstein • 4.5K views • 4 years ago The spectroscopes and emission and absorption spectra explain

electron-positron annihilation spectral signature from the Milky Way

for amusement: the music of

gamma-ray and nuclear spectroscopy

Gravitational-wave spectra/spectrogram

I i 0:00 / 0:35

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

ELIGO MONVIRG Seorgia

Spectral analysis (producing spectrum and spectrogram) is fundamentally a method of mapping/classification that is very useful for any quantitative science.

Especially for periodic phenomena, Fourier-spectral analysis is a mapping of power/energy/magnitude (P/E/A) vs. frequency category. Example: We identify individual voices of family, friends, acquaintances based on our supervised learning of classification with audio spectrum. (in a household, we can even tell whom even with just a cough or a footstep of the person).

Even for non-periodic phenomena, Fourier spectral analysis can be useful to classify types of randomness such as white noise, 1/f, Brownian noise,... (we will touch upon Itô calculus if we have time).

Example of periodic human socio-economic activities

Stock market is a Brownian "random down Wall Street"

No periodicity because of market efficiency

Dow-Jones index (1896-2016)

Dow-Jones index power spectral density (Brownian noise)

more review of periodic phenomena

what a spectrum is not...

("spectral range" is often colloquially – or in general languagesynonymous with "spectrum." But strictly and technically, do not be confused of spectral range vs. spectrum)

General usage

Technical usage (plot of power/ energy/magnitude vs. frequency

spectrum noun

spec·trum | \ 'spek-trəm () \ plural spectra \ 'spek-trə () \ or spectrums

Definition of spectrum

- **1 a** : a continuum of color formed when a beam of white light is dispersed (as by passage through a prism) so that its component wavelengths are arranged in order
 - any of various continua that resemble a color spectrum in consisting of an ordered arrangement by a particular characteristic (such as frequency or energy): such as
 - (1) : ELECTROMAGNETIC SPECTRUM
 - (2) : RADIO SPECTRUM
 - (3) : the range of frequencies of sound waves
 - (4) : MASS SPECTRUM
 - : the representation (such as a plot) of a spectrum
- a : a continuous sequence or range
 // a wide *spectrum* of interests
 // opposite ends of the political *spectrum*

Frequency spectral range is not P/E/A spectrum - it is only the "frequency-axis range" of a P/E/A spectrum

Typical Range of Common Sounds

Amplitude range is NOT spectrum

This really means the spectral range of EM waves

This really means the human-eye visible spectral range

This is the reason why we use a more specific and accurate expression: "power/energy/ magnitude spectral density," and "spectrum" for short.

It's OK to mix general language and technical usage of word "spectrum" as long as we know what it means.

Example: *What is the solar spectrum*? In the technical context, it means solar irradiance spectral density, and not a light wavelength range from far-IR to UV.

How to obtain the spectrum of a signal?

- Use an analog spectrum analyzer (filters, heterodyne detectors, frequency-dispersive devices, ... that can separate frequencies)
- If the signal is digitized, do numerical Fourier transform (aka discrete Fourier transform).

Example of analog spectrum analyzer we all have

Awfully low spectral resolution, but it works great!

Example of analog spectrum analyzer we all have

How to obtain the spectrum of a signal?

- Use an analog spectral analyzer (filters, heterodyne detectors, frequency-dispersive devices that can separate frequencies)
- If the signal is digitized, do numerical Fourier transform (aka discrete Fourier transform).

This is what we do in this class

We define the power-spectral-density (PSD) function of a signal s(t) as: $P(f) = \lim_{T \to \infty} \frac{1}{T} \left| \int_0^T s(t) e^{i 2\pi f t} dt \right|^2 \qquad \left(\frac{s - \text{unit}^2}{\text{Hz}} \right)$

If it is an energy signal, i. e. finite in time, then the ESD is: $E(f) = \left| \int_{-\infty}^{\infty} s(t) e^{i 2 \pi f t} dt \right|^{2} \qquad \left(\frac{s - \text{unit}^{2} \times \text{sec}}{\text{Hz}} \right)$

Power or energy here is not the real physical power or energy; they are used only as analogous concepts to the real ones.

Now, we are ready to try some exercises (open and run the app)

Conceptual relationship between spectrum and spectral response:

- spectrum of a signal coming from a source
- spectral response of an object given a stimulus

To be continued to lecture part 2