ECE3340

Numerical Fitting, Regression, Interpolation and Approximation

PROF. HAN Q. LE

Note: PPT file is the main outline of the chapter topic associated Mathematica file(s) contain details and assignments

Overview

Types of problems

complex data from
\% fundamentälly stochastic

Medical, social
8^{2} complex systenn but

simplified, fitting, approximatio

The underlying motivation is to simplify - to make things easy to understand or to implement

A crucial fundamental difference

Intrinsically stochastic large fluctuation is

Example: a medicine efficacy: fluctuation is not due measurement errors, but genuine individual genetic/ lifestyle variation.

Deterministic basis (e. g. per physical law) with known model + random errors

Model Analytics
Fit according to model
 known basis models. Deviation is due to small, uncontrolled errors

Part A - Data Analytics

DATA PRESENTATION (VISUALIZATION), STATISTICS, REGRESSION, CLASSIFICATION.

known model, but unknown parameters

Regression

- Objective: estimate parameters
- Key considerations: confidence of model, ANOVA

Data (empirical, simulation, or by design)

Data Analytics - Statistical Learning

This has evolved from data analysis to data analytics, pattern classification

Outline

- Linear regression
- single variable
\checkmark multiple variables
L Linearization of non-linear model
- linear-exponential or log-linear
- power-relationship: log-log
> general non-linear
- General model fit

Least squares of linear combination of basis functions
Discrete (quantized) variables and generalized regression: logistic regression

- Introduction to data clusters and classification

Linear Regression

Introduction to regression concept (see Mathematica lecture file)

Linear regression with single variable

UNIVERSITY of HOUSTON App by Han Q. Le ©

ECE3340-APP-Linear regression

	Deg. freed.	Sum sq	Mean sq	F-Statistics	P -Value
x	1	0.296605	0.296605	133.17	1.07351×10^{-6}
Error	9	0.0200454	0.00222727		
Total	10	0.31665			

Key concepts

- Model parameters:
> coefficients, correlation R2
- standard error, covariance matrix, correlatio!ı matrix
> confidence ellipsoid
> Linear regression statistics
$>$ residuals
- parameter t-statistics, P-value
- Analysis of variance (ANOVA): dof, sum of squares, mean squares, F-statistics

Covariance matrix of parameters Confidence ellipsoid

Estimates for a and b are not independent. They are related by mean x and mean y as shown, hence, the distribution of their values are not independent.
in class demo: if we know one coefficient by any other mean, this changes the estimate for the other coefficient (move the planes).

Key concepts

> Model parameters:
> coefficients, correlation R2
$>$ standard error, covariance matrix, correlation matrix
> confidence ollinsoid
> Linear regression statistics
$>$ residuals

- parameter t-statistics, P-value
- Analysis of variance (ANOVA): dof, sum of squares, mean squares, F-statistics

From the example discussed

In[o]:= covMat // MatrixForm

Out[-]//MatrixForm $=\left(\begin{array}{cc}0.00215119 & -0.00319625 \\ -0.00319625 & 0.00728862\end{array}\right)$

In[o]:= Plot3D [PDF [MultinormalDistribution [ahat, covMat], \{u, v\}], $\{u, 1.9,2.2\},\{v, 0.95,1.4\}$, PlotRange \rightarrow All
, BoxRatios $\rightarrow\{3,4.5,3\}$, ColorFunction \rightarrow "Rainbow"
, MeshFunctions $\rightarrow\{\not \approx 3$ \& \}]

In[o]:= eigen

Out $[0]=$	Eigenvalue	Index	u1	u2
1.10248	1.	0.448759	0.448759	
0.897518	1.10832	0.551241	0.551241	

$\ln [\mathrm{e}]$:= ahatconf

| | Estimate | Standard Error | Confidence Interval |
| ---: | :--- | :--- | :--- | :--- |
| Out[o]= u1 | 2.03334 | 0.0463809 | $\{1.9413,2.12538\}$ |
| u 2 | 1.1749 | 0.0853734 | $\{1.00548,1.34432\}$ |

A very useful exercise to understand

 variable correlation Review of binormal distributionExample: human body measures- gender correlation

Example in HW

Outline

Linear regression

- single variable
\checkmark multiple variables
$>$ Linearizatiori of non-linear model
- linear-exponential or log-linear
- power-relationship: log-log
- general non-linear
- General model fit
- ! east squares of linear combination of basis functioi is

Discrete (quantized) variáoies and generalized regression: logistic regression

- Introduction to data clusters and classification

Mathematica file on generalized leastsquare regression

Introduction to data survey and visualization methods (see Mathematica lecture file)

