ECE3340 Numerical Fitting, Regression, Interpolation and Approximation PROF. HAN Q. LE

Note: PPT file is the main outline of the chapter topic – associated Mathematica file(s) contain details and assignments

Overview

Data, dal 1

A special report on managing information

-

The Economist

Types of problems

The underlying motivation is to simplify - to make things easy to understand or to implement

A crucial fundamental difference

Intrinsically stochastic – large fluctuation is intrinsic – not nec. errors

Data Analytics

Example: a medicine efficacy: fluctuation is not due measurement errors, but genuine individual genetic/ lifestyle variation. Deterministic basis (e.g. per physical law) with known model + random errors

Part A – Data Analytics

DATA PRESENTATION (VISUALIZATION), STATISTICS, REGRESSION, CLASSIFICATION.

Data Analytics – Statistical Learning

This has evolved from data analysis to data analytics, pattern classification

Outline

- Linear regression
 - single variable
 - multiple variables
- Linearization of non-linear model
 - linear-exponential or log-linear
 - power-relationship: log-log
 - general non-linear
- General model fit
 - Least squares of linear combination of basis functions
- Discrete (quantized) variables and generalized regression: logistic regression
- Introduction to data clusters and classification

Linear Regression

Introduction to regression concept (see Mathematica lecture file)

Linear regression with single variable

		Deg. freed.	Sum sq	Mean sq	F–Statistics	P–Value
I	х	1	0.296605	0.296605	133.17	1.07351 × 10 ⁻⁶
I	Error	9	0.0200454	0.00222727		
I	Total	10	0.31665			

Key concepts

- Model parameters:
 - coefficients, correlation R2

standard error, covariance matrix, correlation

matrix

- confidence ellipsoid
- Linear regression statistics
 - residuals
 - parameter t-statistics, P-value
 - Analysis of variance (ANOVA): dof, sum of squares, mean squares, F-statistics

Covariance matrix of parameters – Confidence ellipsoid

Estimates for a and b are not independent. They are related by mean x and mean y as shown, hence, the distribution of their values are not independent.

in class demo: if we know one coefficient by any other mean, this changes the estimate for the other coefficient (move the planes).

Key concepts

- Model parameters:
 - coefficients, correlation R2
 - standard error, covariance matrix, correlation matrix
 - confidence ellipsoid

Linear regression statistics

- residuals
- parameter t-statistics, P-value
- Analysis of variance (ANOVA): dof, sum of squares, mean squares, F-statistics

From the example discussed

Null hypothesis

		Estim	ate Stan	dard Error	t-Statist	P-Value
Out[•]=						3.34417 × 10 ^{−66}
	u2	1.174	9 0.08	53734	13.7619	1.25441 × 10 ⁻²⁴
		DE	22	MS	E Statistic	D VAND
					E-DIAUSUC	P-Maille
0.45 1	u1	1	48363.1	48363.1	8665.47	1.93448 × 10 ^{−97}
Out[•]=	u1 u2	1	48363.1	48363.1	8665.47	
Out[•]=	u1 u2 Error	1 1	48 363.1 1057.02	48363.1	8665.47	1.93448 × 10 ^{−97}

тц <i>е</i> ј.–	eigen							
Out[•]=		1.	u1 0.448759 0.551241					
In[•]:= a	ahatcor	ıf						
Out[•]=	1 2.03334	0.0463809	rror Confide {1.9413 {1.0054	, 2.12538}				
	34, 1.1749},	{0.233444,	0.0618608},	2183}}]				
<pre>{{-0.432183, 0.901786}, {-0.901786, -0.432183}}] In[*]:= Graphics[{EdgeForm[{Thickness[0.005], Red}], Hue[0.08, 1, 1, 0.3], Ellipsoid[ahat, covMat] , Blue, Opacity[1], Thickness[0.01], Arrowheads[0.1] , Arrow[#] & /@</pre>								
Hue[0, Blue, , Blue, , Arre {({a	0.08, 1, 1, 0. e, Opacity[1] ow[#] & /@ shat, ahat} + {-ahatellips {ahat, ahat} {-ahatellips	3], Ellipso], Thickness ahatellipse se[[3, 1]], + ahatelliµ se[[3, 2]],	id[ahat, cov ;[0.01], Arr [[2, 1]] * ahatellipse ose[[2, 2]] * ahatellipse	Mat] owheads[0.1] [[3, 1]]})				

A very useful exercise to understand variable correlation **Review of binormal** Example: human body distribution

measures-gender correlation

Example in HW

Outline

- Linear regression
 - single variable
 - multiple variables
 - Linearization of non-linear model
 - linear-exponential or log-linear
 - power-relationship: log-log
 - general non-linear
 - General model fit
 - Least squares of linear combination of basis functions
- Discrete (quantized) variables and generalized regression: logistic regression
- Introduction to data clusters and classification

Mathematica file on generalized leastsquare regression

Introduction to data survey and visualization methods (see Mathematica lecture file)

