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(continued from Part 2)

7. Properties of the Fourier transform and related 
theorems

7.1 Real and Imaginary part:

Consider:                                    χ[ f ] = ∫-∞

∞
x[t] ⅇⅈ 2 π f t ⅆ t                            (7.1.1a)

1. If x[t] is real, then:                 χ*[ f ] = ∫-∞

∞
x[t] ⅇ-ⅈ 2 π f t ⅆ t = χ[- f ]        (7.1.1b)

2. We can take the Re and Im part:

                                         Re[χ[ f ]] = ∫-∞

∞
x[t] Cos[2 π f t] ⅆ t                        (7.1.2a)

                                         Im[χ[ f ]] = ∫-∞

∞
x[t] Sin[2 π f t] ⅆ t                          (7.1.2b)

 We notice that, because of the even and odd property of Cos and Sin function:



                       Re[χ[- f ]] = ∫-∞

∞
x[t] Cos[-2 π f t] ⅆ t

= ∫-∞

∞
x[t] Cos[2 π f t] ⅆ t

= Re[χ[ f ]]

                                    (7.1.3)

Hence, Re[χ[f ]] is even, and similarly, Im[χ[f ]] is odd.

3. If x[t] is even, then Im[χ[f ]]=0, or  χ[f ] is purely real

4. If x[t] is odd, then Re[χ[f ]]=0, or  χ[f ] is purely imaginary

Since generally:                   x[t] = 1
2
(x[t] + x[- t]) +

1
2
(x[t] - x[- t])

≡ xeven[t] + xodd[t]

              (7.1.4)

The Fourier transform:

                                             χ[ f ] = χeven[ f ] + ⅈ γodd[ f ]                                  (7.1.5)

is a general complex number (neither purely real nor purely imaginary, and thus, the phase of a Fourier 

transform is related to the function asymmetry. But this symmetry depends on the origin. For example:

Illustration

◼
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We see that just by translating the signal function away from the origin, the 3D line of the FT twists away 

from the real axis plane. The added phase ⅇⅈ 2 π f tshift  is meaningless unless there are other signals and their 

relative phase differences are important. 

We’ll see in Section 7.3 that the phase is also related to relative position of the signal or parts within the 

signals. An example of the importance of the phase term is wave diffraction of periodic structures.

Illustration 1: Diffraction grating or the CD/DVD/BluRay effect
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Illustration 2: phased array antenna:

The relative phase differences between the dipoles determine the bearing, i. e. azimuthal angular direction 

of the main lobe of the radiation. 
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7.2 Delta function and Fourier transform

What is the Fourier transform of delta function? We know that delta-function is not a conventional func-

tion, but if we apply the formalism:

                                 K[ f ] = ℱ [δ[t]] = ∫-∞

∞
δ[t] ⅇⅈ 2 π f t ⅆ t = ⅇⅈ 2 π f 0 = 1          (7.2.1)

This is not qualified as true Fourier transform, since the function K[f]=1 is not integrable from -∞ to ∞ 

and we cannot obtain the inverse transform:

                                             ℱ -1[K[ f ]] = ∫-∞

∞
ⅇ-ⅈ 2 π f t ⅆ f = ?                              (7.2.2)

It is indeterminate. However, if t≠0 and if we make the convention that:
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                                      ∫-∞

∞
ⅇⅈ 2 π f t ⅆ f = limN→∞ ∫-N/t

N/t
ⅇⅈ 2 π f t ⅆ f

then:

                                              ∫-∞

∞
ⅇⅈ 2 π f t ⅆ f = 

0 if t ≠ 0
∞ if t = 0

                                    (7.2.3)   

which is a property of δ-function. We still need the property:

                                        x[t] = ∫-∞

∞
x[t '] ∫-∞

∞
ⅇⅈ 2 π f (t-t') ⅆ f  ⅆ t '                            (7.2.4)

for  ∫-∞

∞
ⅇⅈ 2 π f (t-t') ⅆ f  to act like  δ(t- t ') .

Let's look at Eqs. (5.1.11a and b) above:

                                                        χ[ f ] = ∫-∞

∞
x[t] ⅇ-ⅈ 2 π f t ⅆ t                             (5.1.9a)

                                                         x[t] = ∫-∞

∞
χ[ f ] ⅇⅈ 2 π f t ⅆ f                              (5.1.9b)

If we take χ[f ] in (5.1.9a) and insert in (5.1.9b), we obtain:

                 x[t] = ∫-∞

∞
χ[ f ] ⅇⅈ 2 π f t ⅆ f = ∫-∞

∞
∫-∞

∞
x[t '] ⅇ-ⅈ 2 π f t' ⅆ t ' ⅇⅈ 2 π f t ⅆ f      (7.2.5)

Rearranging (7.2.5):

                                    x[t] = ∫-∞

∞
x[t '] ∫-∞

∞
ⅇ-ⅈ 2 π f t' ⅇⅈ 2 π f t ⅆ f  ⅆ t '              

                                          = ∫-∞

∞
x[t '] ∫-∞

∞
ⅇⅈ 2 π f (t-t') ⅆ f  ⅆ t '                                   (7.2.6)

But we recall that:

                                              x[t] = ∫-∞

∞
x[t '] δ(t- t ') ⅆ t '                                            (7.2.7)

Thus, Eqs. (7.2.3) along with (7.2.6) allows us to conclude:

                                         ∫-∞

∞
ⅇⅈ 2 π f (t-t') ⅆ f = δ(t- t ')                                            (7.2.8)

Obviously, it is only a convention, but we'll see it can be very convenient. It is obvious by taking the 

conjugate that  (7.2.8) is valid for both +f or -f in the exponent of the left hand side.

7.3 Fourier Transform Theorems

There are a number of basic properties of FT that are straightforward. Knowing these theorems sometimes 

can help to find FT without too much work. These are: (in the following, we denotes χ[ f ] as the FT of x[t], 

or ℱ [x])

1. Linear superposition:

                      ℱ [a1 x1 + a2 x2] = a1 ℱ [x1] + a2 ℱ [x2]

                                                  = a1 χ1[ f ] + a2 χ2[ f ]            (7.3.1)

2. Translation or time delay

                                   ℱ [ x[t- t0]] = χ[ f ] ⅇ-ⅈ 2 π f t0                  (7.3.2)

3. Scaling

                                      ℱ [ x[a t]] =
1
a

χ
f

a
                             (7.3.3)

A special case is reflection or time reversal:

                             ℱ [ x[- t]] = χ[- f ] = χ*[ f ]  (if real)            (7.3.4)

4. Duality:
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                                         ℱ [ χ[t]] = x[- f ]                                (7.3.5)

(this is related to               ℱ -1[χ[ f ]] = x[t]                   )           

We have discussed a beautiful illustration of this simple theorem:

5. Frequency shift (translation):    (follow from 2 and 4)

                                      ℱ [ x[t] ⅇⅈ 2 π f0 t ] = χ[ f - f0]                  (7.3.6)

A special case for amplitude modulation:

               ℱ [ x[t] Cos[2 π f0 t ] ] =
1
2
(χ[ f - f0] + χ[ f + f0])      (7.3.7) 

From an app in Part 

2:

Lect_3340_Fourier_background_review_part3.nb     7



We see that with a carrier, the Fourier transform of the signal (a ramp in this case) consists of two compo-

nents centering around f0 and - f0

6. Differentiation:   

                                       ℱ 
ⅆn

ⅆtn
x[t]  = (ⅈ 2 π f )n χ[ f ]                   (7.3.8) 

7. Integration:

                     ℱ ∫-∞

t
x[t '] ⅆ t '  = (ⅈ 2 π f )-1 χ[ f ] +

1
2

χ[0] δ[ f ]      (7.3.9) 

8. Convolution: (remember this)               

                                        ℱ [ x1 ⊗ x2] = χ1[ f ] χ2[ f ]                     (7.3.10) 

9. Multiplication: (this follows from 8 and 4 above):

                                       ℱ [ x1[t] x2[t]] = χ1[ f ] ⊗ χ2[ f ]              (7.3.11) 

7.3.1 An additional note on convolution

Note that the theorem on convolution does involve the Fourier parameters of a given convention of Fourier 

transform. The above theorem is appropriate when we use the signal processing convention.

Let                                          u[t] = ∫ x1[θ] x2[t- θ] ⅆθ                    (7.3.12)

We substitute:                         x1;2[θ] = ∫ χ1;2[ f ] ⅇ
ⅈ 2 π f θ ⅆ f

                                  u[t] = ∫ ∫ χ1[ f '] ⅇⅈ 2 π f ' θ ⅆ f ' ∫ χ2[ f ] ⅇ
ⅈ 2 π f (t-θ) ⅆ f ⅆθ
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                                  u[t] = ∫ ⅆ f χ2[ f ] ⅇ
ⅈ 2 π f t

∫ ⅆ f ' χ1[ f '] ∫ ⅆθ ⅇⅈ 2 π ( f ' - f ) θ

Since:                                    ∫ ⅆθ ⅇⅈ 2 π ( f ' - f ) θ = δ[ f ' - f ]

                                  u[t] = ∫ ⅆ f χ2[ f ] ⅇ
ⅈ 2 π f t

∫ ⅆ f ' χ1[ f '] δ[ f ' - f ]

                                         = ∫ ⅆ f χ2[ f ] χ1[ f ] ⅇ
ⅈ 2 π f t

Thus, it is obvious that:

                                  ℱ [ x1 ⊗ x2] = ℱ [ u] = χ1[ f ] χ2[ f ]           (7.3.13)

The reverse can be similarly proven.

However, we should note that for other convention:

                                  x1;2[θ] =
1

2 π
∫ χ1;2[ω] ⅇ

-ⅈ ω θ ⅆω                 (7.3.14)

The result is:

                         u[t] = 1
2 π ∫ ∫ χ1[ω '] ⅇ-ⅈ ω' θ ⅆω ' ∫ χ2[ω] ⅇ

-ⅈ ω (t-θ) ⅆω ⅆθ

                               = 1
2 π ∫ ⅆω ⅇ-ⅈ ω t χ2[ω] ∫ ⅆω ' χ1[ω '] ∫ ⅇⅈ (ω-ω') θ ⅆθ

Similarly to the above:

                                         1
2 π ∫ ⅇⅈ (ω-ω') θ ⅆθ = δ[ω-ω ']         

Hence:

                                        u[t] = ∫ ⅆω ⅇ-ⅈ ω t χ2[ω] χ1[ω]

                                        u[t] = 1

2 π
∫ ⅆω ⅇ-ⅈ ω t 2 π χ2[ω] χ1[ω]

Thus:                 ℱ [ x1 ⊗ x2] = ℱ [ u] = 2 π χ1[ω] χ2[ω]          (7.3.15)

We see that there is this factor 2 π  that may appear a bit odd, but it is just a factor and does not really 

affect anything fundamental about this theorem. In fact:

                            ℱ -1 [ℱ [ x1 ⊗ x2] ] = 2 π ℱ -1[χ1[ω] χ2[ω]]     (7.3.16)  

                                    x1 ⊗ x2 = 2 π ℱ -1[χ1[ω] χ2[ω]]     

Or:                               ℱ -1[χ1[ω] χ2[ω]] =
1

2 π
x1 ⊗ x2                (7.3.17a)

Collorally:                    ℱ [x1 × x2] =
1

2 π
χ1[ω] ⊗ χ2[ω]              (7.3.17b)                  

As long as the coefficient is kept consistently, it will work out fine.

7.4 Generalized functions

We have seen FT of delta function. The following are the FT of generalized functions, which are useful 

when FT is applied to power signals (instead of only energy signals).
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7.4.1 Most common functions

In[ ]:= ClearAll[t, f, f0];

funcGen = DiracDelta[t - t0], ⅇ
ⅈ 2 π f0 t, Cos[2 π f0 t], Sin[2 π f0 t]

, HeavisideTheta[t], Sign[t],
1

π t
;

FTlist = Table[FourierTransform[u, t, f, FourierParameters → {0, -2 π}]

, {u, funcGen}];

Grid[Join[{Style[#, 24, Bold, White, FontFamily → "Century Gothic"] & /@

{"function/inverse Fourier T", "Fourier T/function"}}

, Transpose[{funcGen, FTlist}]]

, BaseStyle → {24, FontFamily → "Times New Roman"}

, Frame → All, Background → {{Hue[0.15, 0.4, 1], Hue[0.4, 0.4, 1]}

, {Hue[0.75, 1, 0.1],}}]

Out[ ]=

function/inverse Fourier T Fourier T/function
DiracDelta[t- t0] ⅇ-2 ⅈ f π t0

ⅇ2 ⅈ f0 π t DiracDelta[f - f0]

Cos[2 f0 π t] 1
2 DiracDelta[-f + f0] +

1
2 DiracDelta[f + f0]

Sin[2 f0 π t] - 1
2 ⅈ DiracDelta[-f + f0] +
1
2 ⅈ DiracDelta[f + f0]

HeavisideTheta[t] - ⅈ
2 f π

+ DiracDelta[f]
2

Sign[t] - ⅈ
f π

1
π t -ⅈ Sign[f]

In traditional format:                    (7.4.1)
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Out[ ]=

function/inverse Fourier T Fourier T/function
δ(t- t0) ⅇ-2 ⅈ π f t0

ⅇ2 ⅈ π f0 t δ( f - f0)

cos(2 π f0 t) δ(f0- f )
2 + δ( f+f0)

2

sin(2 π f0 t) ⅈ δ( f+f0)
2 - ⅈ δ(f0- f )

2

θ(t) δ( f )
2 - ⅈ

2 π f

sgn(t) - ⅈ
π f

1
π t

-ⅈ sgn( f )

In addition to these results, two other related FTs also useful in many applications are Hilbert transform 

and periodic delta-function sampling waveform or ideal sampling waveform (or impulse sampling wave-

form).

1- Hilbert transform is defined as:

                                               x[t] = x[t] * 1
π t

=
1
π ∫-∞

∞ x[λ]

t-λ
ⅆλ                    (7.4.2)

 The FT of  x[t] is:

                                            ℱ [ x

[t]] = -ⅈ sgn[ f ] ℱ [ x[t]]

= -ⅈ sgn[ f ] χ[ f ]

                        (7.4.3)

2- An ideal sampling waveform is simply a periodic delta-function: ∑m=-∞
∞ δ[t-m Ts]. We have studied 

this in Chapter 3, Lecture 3-2:

                                                 x[t] = 1
Ts

∑m=-∞
∞ ⅇⅈmω t = ∑m=-∞

∞ δ[t-m Ts]    

              Its FT is simply:       ℱ [x[t]] =
1
Ts

∑m=-∞
∞ ℱ [ ⅇⅈmω t] = fs ∑m=-∞

∞ δ[ f -m fs]

or:                                            

                                     ℱ [∑m=-∞
∞ δ[t-m Ts]] = fs ∑m=-∞

∞ δ[ f -m fs]        (7.4.4)

8. Power and Energy Spectral Density

8.1 Introduction

See the ppt part of the lecture.
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Link to ppt on the concept of spectrum 

8.2 Discussion

Consider the figure above, suppose we have a solar cell that works from 400 nm to 800 nm and want to 

know how much sun power it can generate, we start by finding out how much total sun power in that 

wavelength range:

                                   ∫400 nm
800 nm

P[λ] ⅆλ = P0                       (8.2.1)

where P]λ] is sunlight power as a function of wavelength. Since P0 is power, in unit of, say, watt, then 

function P[λ] has to have the unit of watt/(unit of wavelength). Thus, P[λ] is the power per unit of spectral 

wavelength, or we can just call it “power spectral density”: 

                             P[λ] ≡ Lim
Δλ→ 0

Pbetween λ-
Δλ

2
and λ+

Δλ

2


Δλ
           (8.2.2)
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8.2.1 Example of discrete spectrum

Now, let’s consider a voltage signal, like this:

◼

Out[ ]=
5 10 15 20

-1.0

-0.5

0.5

1.0

that is applied to our 50-Ω load. What is the power delivered to the load? For instantaneous power, it is:

                                     P[t] = v[t]2

Rload
                                            (8.2.3)

◼

Out[ ]=

power in one period
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1.2

and more relevant is the average power per unit of period: 

                       Pave =
1
T ∫0

T
P[t] ⅆ t =

1
T Rload

∫0
T
v[t]2 ⅆ t          (8.2.4)

For simplicity, from now on, we will drop Rload and treat it as 1 because it is just a constant factor.

There is another way to look at power: we have learned from Fourier’s theorem:

◼
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Out[ ]=
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As shown above, we know that each real harmonic component Xm ⅇⅈ 2 πm f0 t + Xm
* ⅇ-ⅈ 2 πm f0 t delivers an 

average power:                     Pm =
1
2

4 Xm
2 = 2 Xm

2               (8.2.5)

then, the total power average power for all components should be:

                                 Pave = X0
2 + ∑m=1

∞ 2 Xm
2                           (8.2.6)

If so, these two expressions of power should be equivalent:

                
time- domain power frequency- domain power

Pave =
1
T ∫0

T
v[t]2 ⅆ t Pave = X0

2 + ∑m=1
∞ 2 Xm

2    (8.2.7)

which is Parseval’s theorem that was covered in Chapter 3.

◼
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In the above, we see that power can be expressed as a function of frequency, this is the concept of spec-

trum: power vs. frequency. In this case, the spectrum is discrete because the frequency set is.

8.2.2 Example of continuous spectrum

However, what if the signal is only one pulse:

◼

Out[ ]=
-4 -2 2 4 6 8

-1.0

-0.5

0.5

1.0

The concept of instantaneous power still applies, but over the whole pulse duration, or over all time from 

-∞ to ∞, assuming that the pulse has only finite duration as shown, the key concept is total energy deliv-

ered to the load:

                P[t] = v[t]2

Rload
   ;     E = ∫-∞

∞
P[t] ⅆ t =

1
Rload

∫-∞

∞
v[t]2 ⅆ t       (8.2.8)

What becomes to the Fourier transform?

◼
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In fact, for the FT, frequency variable f  simply becomes continuous. The absolute square of the FT, χ[ f ]2 

must be somehow proportional to the power or energy density of the harmonic associated with f . In this 

case, we have a continuous spectrum, and instead of a sum, we have an integral:

                 
time- domain energy frequency- domain energy

E = ∫-∞

∞
v[t]2 ⅆ t ? = ∫-∞

∞
χ[ f ]2 ⅆ f

          (8.2.9)

8.3 Parseval’s theorem extension to continuous variable

In Chapter 3, lecture 2, we have learned about Parseval’s theorem for the Fourier series of a periodic 

function and we mention it again in 8.2.1 example above. Now, let’s take a look at the case of continuous 

signal.

If a signal is square integrable from -∞ to ∞, i. e.

                                                ∫-∞

∞
x[t] 2 ⅆ t = E                                      (8.3.1)

then, we define it to be an energy signal. For the sake of generality, we will allow x[t] to be complex and if 

it is associated with a real physical quantity such as voltage, then, like phasor, we’ll let the physical quan-

tity be its real part. If the signal has a Fourier transform, we can substitute to see that:

                                     E = ∫-∞

∞
x[t] 2 ⅆ t = ∫-∞

∞
x[t] x*[t] ⅆ t          

                                        = ∫-∞

∞
∫-∞

∞
χ[ f ] ⅇⅈ 2 π f t ⅆ f  x*[t] ⅆ t                   (8.3.2)

 Re-arranging:

                                      E = ∫-∞

∞
χ[ f ] ∫-∞

∞
ⅇⅈ 2 π f t x*[t] ⅆ t  ⅆ f                      (8.3.3)

  We notice that:
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                                        ∫-∞

∞
ⅇⅈ 2 π f t x*[t] ⅆ t  = ∫-∞

∞
ⅇ-ⅈ 2 π f t x[t] ⅆ t 

*      

                                                                            = χ[ f ] *                                  (8.3.4)

  Substitute (8.3.4) in (8.3.3), we obtain:

                                       E = ∫-∞

∞
χ[ f ] χ*[ f ] ⅆ f = ∫-∞

∞
χ[ f ] 2 ⅆ f              (8.3.5)

 Comparing (8.3.5) to (8.3.1), we see that:

                                           ∫-∞

∞
x[t] 2 ⅆ t = ∫-∞

∞
χ[ f ] 2 ⅆ f                     (8.3.6)

Thus, we have Parseval's theorem for the continuous FT and we can assert the case above:

                  
time- domain energy frequency- domain energy

E = ∫-∞

∞
v[t]2 ⅆ t E = ∫-∞

∞
χ[ f ]2 ⅆ f

.            (8.3.7)

The function

                                               G[ f ] = χ[ f ]2                                                   (8.3.8)

represents the energy density per unit of frequency, and we call it energy spectral density. From the pure 

mathematics perspective however, x[t] can be anything, even variable t needs not be time. If so, why 

would we use concepts like energy and power as energy per unit time? The answer is simple, it is just a 

convention.

8.4 Empirical applications and examples

Recall that when we discussed Bode’s plot, we mentioned that who would ever be interested in Bode’s plot 

for a system with a perfectly known analytic model? It is the empirical Bode’s plot for an unknown system 

that we want to understand and discover is what make it interesting.

The same can be said to PSD function: the reason we learn it is to apply to data of systems or subjects we 

want to study. As shown in the ppt files, there are numerous applications of PSD functions. Below, we do 

a few more and some more in HW.

8.4.1 Sun spots

Consider this example:
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This is a phone ring tone of 10 x sun spots data

Out[ ]=

0.65 s | 50000 Hz

What is its power spectral density? Notice how funny the units are: for frequency, instead of Hz (1 per 

second), we have year-1 or per year. Since the data is monthly, we have max Nyquist frequency of twice a 

month of 6/year. For the vertical scale, the unit is (ahem...)

                            dBmonthly- averaged- number- of - sunspots2 / year-1
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What does it show? First, the 11-year cycle is obvious, and there is a weak 2nd harmonic. But does it 

appear to have a shorter cycle of 10 year (frequency 0.1/per year) and a long cycle of 0.0112 or ~ 89 year 

period?
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A way to analyze is to plot those components which we will do in HW. For the 89-year component, is it 

real? Given that the data is only 2.5 century, a cycle of almost a century is statistically meaningless. 

But quite interesting is the high-frequency tail of the spectrum. It almost looks like /1 / f α noise, α could 1 

or slightly less than 1, and the 1/f noise is as it should be since the sunspots must be related to some inter-

nal process that has a cause-and-effect correlation of its past. 

8.4.2 Gold price , Bitcoin price, and others

See the following results: (all the data below are from FRED server of the Federal Reserve Bank of St. 

Louis)

https://fred.stlouisfed.org/

The left hand sides are the price (top) and the relative price change (bottom). Their correspondent power 

spectral densities are on the right. Below is for gold daily price.
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This is for Bitcoin
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Besides the remarkable market psychology parallelism between price and bitcoin (both have peak mania 

and subsequent correction crashes), the PSD tell a fundamental market law. There cannot be any periodic-

ity of the market price daily change, because if so, the price change is predictable and the market would 

quickly exploit it, destroying any periodicity. Indeed they all obey double-sided Laplacian distribution and 

the fluctuation is a Brownian process. 

For the price, if the price change is Brownian, it must obey the “drunkard random walk down Wall Street” 

law and its PSD exhibits 1/f behavior, perfect to a t.

This economic market behavior - based on human trading behavior, is as fundamental and immutable as 

physical laws or more precisely, human economic genetic behavior. It applies to stock prices, ...anything 

involving human trading bahavior. Below are the prices of two items as different from gold and Bitcoin as 

possible, yet the same law applies:
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Notice however, there are big differences in the PSD magnitude: the fluctuation of Bitcoin price certainly 

demonstrate a much high volatility than something as low-risk as US T-bill or something as efficient a 

commodity as oil.

8.4.3 Earth temperature data from Vostok ice sheet

This is for HW
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8.4.4 US consumer behavior

This is for HW: analyze the PSD of VMT in the US.

Should there be any similarity in the PSD of US gasoline consumption and that of vehicle miles traveled?
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Driving behavior and gasoline consumption in the US are driven by economic and cultural activities as 

well as seasonal effects including the weather condition (more in summer, less in winter, occasional peak 

on Thanksgiving etc.). Regardless of oil price, people will do what they do. But is there any price elastic-

ity? It is NOT just about the absolute gas price because surely, if the price is above $4/gallon, many will 

drive less -  as it can be seen in those oscillations when the price hit $4/gallon 2011-2014. But more 

interesting is whether the price change, e. g. 20% increase or decrease would have people to drive slightly 

more or less? We may also notice that the price tends to go up during Thanksgiving etc. The topic we’ll 

learn later is regresssion and time-series data correlation that can handle these questions best. However, it 

is worthwhile for us to look at the PSD to see if there are any interesting features there.

8.5 Empirical-data-based formulation

For all the emprical examples above, it is obvious that we could not have obtained the PSD χ[ f ]2 via 

Fourier transform in the strict mathematical sense:

Lect_3340_Fourier_background_review_part3.nb     25



                                 χ[ f ] = ∫-∞

∞
x[t] ⅇ-ⅈ 2 π f t ⅆ t                                 (8.5.1)

First, in reality, there is no such a thing as a signal known from -∞ to ∞. The data is available only over 

some duration T, let’s say from -T/2 to T/2. Then, we can only do this:

                                         χ

[ f ] = ∫-T/2

T/2
x[t] ⅇ-ⅈ 2 π f t ⅆ t                       (8.5.2)

and define conceptually: 

                          χ[t] = Lim
T→∞

χ

[ f ] = Lim

T→ ∞
∫-T/2
T/2
x[t] ⅇ-ⅈ 2 π f t ⅆ t            (8.5.3)

In other words, the more data we obtain of signal x[t], the more accurately does function χ

[ f ] approximate 

the true value χ[t].

However, there is a problem with (8.5.2): what it does, is this:

χ

[ f ] = 

-∞

∞

x

[t] ⅇ-ⅈ 2 π f t ⅆ t ;

where x

[t] = 

x[t] -T /2 ≤ t ≤ T /2
0 elsewhere

(8.5 .4)

In other words, it is the Fourier transform of a truncated signal function. Is this correct? Suppose we 

measure the sun spots like the above example and have data only for 2.5 centuries, should we use a formal-

ism that implicitly assumes the sun spot number was zero before the data is collected and zero afterward 

for billions of years to come as long as the sun still lives?  

A more logical way to handle this (and we’ll see later a natural consequence of  DFT) is that we should 

just pad the data before and after with the same data we have from -T/2 to T/2. In other words, treat the 

data as a periodic function with a super long period of T. Then, instead of (8.5.2), we should use the 

Fourier series component:

                                   χ

m =

1
T ∫-T/2

T/2
x[t] ⅇ-ⅈ 2 π fm t ⅆ t                       (8.5.5)

with the Fourier component power:

                                    χ

m

2 = 
1
T ∫-T/2

T/2
x[t] ⅇ-ⅈ 2 π fm t ⅆ t

2
          (8.5.6)   

such that Parseval’s theorem can be applied:

                                   ∑m=-∞
∞ χ


m

2 =
1
T ∫-T/2

T/2
x[t]2 ⅆ t                  (8.5.7)

What is essential of Eq. (8.5.7) is this:

                   Lim
T→ ∞

1
T ∫-T/2

T/2
x[t]2 ⅆ t = True average of x[t]            (8.5.8)

Hence, regardless what T is, whether we observe the sun spots for 5 years for 5 million year, the result of 

(8.5.8) is still a measure of the true, intrinsic value of the average power of the quantity of interest. 

The only difference between large-T data and small-T data is about the accuracy and uncertainty, 

not about the magnitude of the quantity to be measured. In other words, if we measure something with 

a definite invariant value, we can measure it 5 times or 5000 times to take the mean, it is still the same 

value that is measured and only the uncertainties of the results are different.

Hence, based on (8.5.7), we can use the same approach when we discuss continuous Fourier transform in  

as the case discussed in Section 5.1: we define for the left hand side of (8.5.7):

26     Lect_3340_Fourier_background_review_part3.nb



                          ∑m=-∞
∞ χ


m

2 → ∑m=-∞
∞ χ


[ fm]

2

Δf
Δf

→
if Δf→0

∫-∞

∞ Lim
Δf→0


χ

[ fm]

2

Δf
 ⅆ f

             (8.5.9)

The empirical-based definition of power spectral density is thus: 

                                 PSD[ f ] = Lim
Δf→0


χ

[ f ]

2

Δf
                                  (8.5.10)

where we drop the dummy subscript m from fm.

A more practical expression of (8.5.10) using Eq. (8.5.7) and replacing Δf→0 with T→∞:

               PSD[ f ] = Lim
T→∞

T 
1
T ∫-T/2

T/2
x[t] ⅇ-ⅈ 2 π fm t ⅆ t

2
                (8.5.11a)        

               = Lim
T→∞

1
T

∫-T/2
T/2
x[t] ⅇ-ⅈ 2 π fm t ⅆ t

2
                      (8.5.11b)       

This is exactly the formula we used in all the examples of this chapter, including those in Section 8.4, and 

in all the software utility packages associated with the Fourier series lecture.

8.6 An introduction to noise power spectral density

It may appear that what we learn in this chapter is interesting only if applied to periodic phenomena. 

That’s actually not true. Power spectral density is also useful to study noise phenomena, especially when 

noise affecting periodic phenomena of interest. In all electronic devices, noise power spectral density is an 

important figure of merit, as shown in the example below:

The high-lighted figure above is about voltage noise, not voltage noise power, hence, instead of the unit:

                             noise power unit =
V2

Hz
  ; 

 the spec sheet shows noise amplitude unit V2

Hz
=

V

Hz

A spec sheet typically shows the PSD  for the user to consider in circuit design. Below shows the volt-

age noise spectral density and the current noise spectral density for the op amp above.
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And this shows that not all noises are the same: low frequency noises in the 1/f-characteristic range must 

be handled differently from high-frequency noises which appear to be flat, or “white-noise” in the above. 

What does this mean to a user? A user who designs for example, some applications in certain frequency 

range, e. g. few Hz must be aware of the noise level at that range, which is higher than the noise level for 

100 Hz and above.

As a simple example, if a user uses it for a robot with a control operated in the range of few Hz, it is not 

wise to send/receive the control signal at the baseband, but to modulate the control signal with a higher 

carrier frequency, e. g. 100 kHz for lower noise, and then demodulate to obtain the baseband signal. Thus, 

noise spectral density is a very important figure-of-merit.

How is the noise measured to be reported in this spec sheet? Exactly by the approach we just learn above:

                             PSD[ f ] ~
1
T

∫0
T
x[t] ⅇ-ⅈ 2 π fm t ⅆ t

2
  

28     Lect_3340_Fourier_background_review_part3.nb



except that T doesn’t have to be approaching to ∞, but just a few times longer than the lowest 1
f
 show, 

which means just a few seconds shoud suffice.
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