
(ECE3455, Q2) In the given model of amplifier

a) Find R; so that the input resistance is 10K, R_o so that the output resistance is 1K, and the G_m so that the voltage gain V_0/V_1 is -100.

b) Find C₁ and C₂ so that the $f_L = 100$ Hz and $f_L = 100$ KHz.

c) Obtain the transfer function $T(\omega) = V_0 / V_S$

d) Draw the magnitude and the phase of the transfer function using bode plot method.

Solution:

a)
$$R_i = 10^{kQ}$$
, $R_0 = 1^{l/k2/l}$
 $V_0 = -GmV_i$, $R_0 \Rightarrow V_0 = -GmR_0$
 $-GmR_0 = -100$ $Gm = \frac{100}{R_0} = \frac{100}{l} = 100 \text{ me}$

b) $f_L = \frac{1}{2\pi R_i C_i}$ $f_H = \frac{1}{2\pi R_0 C_0}$
 $C_i = \frac{1}{2\pi R_i f_L} = \frac{1}{2\pi A_0 4 \times 100} = 0.159 \text{ Mf}$
 $C_0 = \frac{1}{2\pi R_0 f_H} = \frac{1}{2\pi A_0 10^3 \times 10^5} = 1.59 \text{ nf}$

c) $T(\omega) = \frac{V_0}{V_0} = \frac{1}{2\pi R_0 G_0} = \frac{R_0 K_1 G_0}{R_0 + \frac{1}{J G_0} \omega} = \frac{R_0}{I + J R_0 G_0 \omega}$
 $V_0 = -GmV_i Z_0 = -GmV_i \frac{R_0}{I + J R_0 G_0 \omega}$
 $V_0 = -GmV_i Z_0 = \frac{J R_i G_i \omega}{I + J R_i G_i \omega} \Rightarrow \frac{V_i V_i}{V_i} = \frac{V_i}{V_i}$
 $V_0 = -GmR_0 R_i C_i = \frac{J R_i G_i \omega}{(1 + J R_0 G_0 \omega)(1 + J R_i G_i \omega)}$