Name:		(please print)
Signature:	5	

ECE 3455 Exam 1 October 9, 2010

Exam duration: 90 minutes

- You may have one 8 ½ x 11 in. "crib" sheet, written on both sides, during the quiz. You may have any calculator you choose, but no computers. No other notes or materials will be allowed.
- Show all work necessary to complete the problem on these pages. A solution without the work shown will receive no credit.
- o Show units in intermediate and final results, and in figures.
- o If your work is sloppy or difficult to follow, points will be subtracted.

This exam has 9 pages, including the cover sheet. Raise your hand if you are missing a page.

1	/25
2	
3	/25
4	
otal	/100

1. (25 points) Find the input impedance, Zin, of the circuit below.

$$\frac{\overline{V_i}}{R_i} + \frac{\overline{V_i - V_s}}{|J_j w C_i|} + \frac{\overline{V_i - A_{vo} V_i}}{|J_j w C_i|} = 0$$

$$\Rightarrow \overline{V_i (R_i + J w C_i + 2J w C_i)} = \overline{V_s J w C_i}$$

$$\overline{I}_{i} = (\overline{V_{s}} - \overline{V_{i}}) \int w C_{i} = \overline{V_{s}} (1 - \overline{V_{s}}) \int w C_{i}$$

$$= \overline{V_{s}} (1 - \frac{\int w C_{i} R_{i}}{1 + 3 \int w C_{i} R_{i}}) \int w C_{i}$$

$$\overline{V_{s}} \left(\frac{1 + 2 \int w C_{i} R_{i}}{1 + 2 \int w C_{i} R_{i}} \right) \int w C_{i}$$

- 2. (**25 points**) The figure below shows the straight-line approximation to the magnitude Bode plot for a certain filter. As the figure shows, the gain between 500 Hz and 700 Hz is 30 dB, and drops off on either side at 60 dB/dec. The gain levels off at 0 dB at frequencies f_1 and f_2 . There are no poles or zeros outside the region shown in the plot. Note that the plot is merely a sketch: it is NOT drawn to scale, and should not be used for quantitative calculations.
- a) It is known that the transfer function T(f) is multiplied by a constant that is real and negative. Find the transfer function.
- b) What is the phase of the transfer function as f approaches infinity?

The slopes are 60 oblder and run for 30 dB, which means that franco 500 Hz are separated by 1/2 dec, as are 2014, and fr.

So...
$$\frac{500 \text{ Hg}}{f_1} = 10^{0.5}$$
 $\frac{f_2}{700 \text{ Hg}} = 10^{0.5}$ $\Rightarrow f_1 = 160 \text{ Hg}$ $f_2 = 2200 \text{ Hg}$.

Poles 3' Zeros:

3. at 160 H3

P1 at 500 H3

Bach!

32 at 2000 H3

P2 at 700 H3

(thodB/dec)

$$T(f) = K \frac{(1+jf/g_0)(1+jf/2200)}{(1+jf/s_{200})^3}$$

We need k :

we need k:

For $f \rightarrow 0$, $T(f) \rightarrow k$, and $|T(f)| \rightarrow 0$ dB

For $f \rightarrow 0$, $T(f) \rightarrow k$, and $|T(f)| \rightarrow 0$ dB

So k = -1. (negative since we are told this!) $T(f) = -1 - \frac{(1+if/60)^3(1+if/200)^3}{(1+if/500)^3(1+if/200)^3}$

ii) For f large, T(f) -> -1 => LIH - 180

If we had evaluated |T(f)| at, say, $600 |f_3|$, we would find $|T(f)| = |K| \cdot \frac{(1+j'60\%60)(1+j'60\%2100)}{(1+j'60\%500)(1+j'60\%200)} = |K| \times 2.448 = 10^{39}ho$

3/K/= 4.23

Why the discrepancy? Because the Break points one so close together that the actual function [T(f)] does not reach 30 dB at 600 Hz: It is about 17.5 dB there. No credit was subtracted if K was found this way.

3. (25 points) If the resistances in the circuit below are chosen appropriately, the circuit is a differential amplifier, i.e., $v_0 = A_{\vec{c}}(v_{i1} = v_{i2})$. Choose resistances so that the differential gain A_d is 10, and the input resistance seen by v_{i1} and v_{i2} are each 5 k Ω . Assume the op amps are ideal.

$$V_{A} = -\frac{R_{F}}{R_{A}} V_{i2}$$

$$V_{2} = \frac{V_{A}}{R_{3}} + \frac{V_{i1}}{R_{2}}$$

$$V_{3} = -\frac{R_{F}}{R_{3}} V_{A} - V_{i1} \frac{R_{F}}{R_{2}}$$

$$R_{F1} = R_{3} = 10 \text{ kg}$$

$$R_{F2} = 50 \text{ kg}$$

$$R_{F2} = 50 \text{ kg}$$

$$R_{F2} = \frac{R_{F2} R_{F1}}{R_{1} R_{3}} V_{i2} - \frac{R_{F2}}{R_{2}} V_{i1}$$

$$R_{4,5,6,7} = \text{anything}$$

$$For R_{i} = 5 \text{ kg for each upot, we need}$$

R = R = R = 5ks.

For
$$V_0 = A_1(V_{i2} - V_{ii})$$
 we need
$$\frac{R_{F2}R_{F1}}{RR_3} = \frac{R_{F2}}{R} \Rightarrow \frac{R_{F1}}{R_3} = 1$$

- 4. (25 points) For the circuit below, assume the op amp is ideal.
- i) Find $v_o(t)$ as a function of $v_i(t)$ for arbitrary $v_i(t)$.
- ii) Find the transfer function $T(\omega) = \frac{\overline{V_o}}{\overline{V_c}}$.
- iii) Show that if $v_i(t) = V_m \cos(\omega t)$, your answers to part i) and part ii) predict the same thing for $v_o(t)$.

$$V_{-} = V_{+} = \frac{1}{2}V_{0}$$
 $\frac{1}{2}\frac{v_{0}-v_{1}}{R} + \frac{1}{2}\frac{v_{0}-v_{0}}{R} + \frac{1}{2}\int_{-2}^{2}v_{0} dt + \frac{1}{2}(0) = 0$

the state of the s

Room for extra work

Room for extra work

$$\begin{array}{lll}
V_{i} &= V_{m} & \text{coc}_{w} t & V_{i} &= V_{m} & \text{Lo}^{\circ} \\
\frac{dO_{i}}{dt} &= -wV_{m} & \text{sin}_{w} t & V_{o} &= \frac{2j\omega L}{R} V_{m} & \text{Lo}^{\circ} \\
V_{o} &= -\frac{2i\omega}{R} V_{m} & \text{sin}_{w} t &= \frac{2wL}{R} V_{m} & \text{Lo}^{\circ} \\
\frac{2i\omega}{R} V_{m} & \text{cos}_{w} t + 90^{\circ} \\
\frac{3}{R} &= -\frac{2i\omega}{R} V_{m} & \text{sin}_{w} (wt)
\end{array}$$

$$\begin{array}{ll}
V_{i} &= V_{m} & \text{Lo}^{\circ} \\
V_{o} &= \frac{2i\omega}{R} V_{m} & \text{cos}_{w} (wt + 90^{\circ}) \\
\frac{3}{R} &= -\frac{2i\omega}{R} V_{m} & \text{sin}_{w} (wt)
\end{array}$$