Name:	(olease print)
Signature:	 	

ECE 3455 Quiz 4 November 18, 2010

Quiz duration: 30 minutes

- 1. You may have one 8 ½ x 11 in. "crib" sheet, written on both sides, during the quiz. You may have any calculator you choose, but no computers. No other notes or materials will be allowed.
- 2. Show all work necessary to complete the problem on these pages. A solution without the work shown will receive no credit.
- 3. Show units in intermediate and final results, and in figures.
- 4. If your work is sloppy or difficult to follow, points will be subtracted.

/20

The circuit below contains a microprocessor, three BJTs, and a lamp. The BJTs have $\beta = 50$ and $V_{CE,sat} = 0.3$ V. When the lamp is on, it draws 20 mA of current (I_L in the circuit) and can be modeled by a resistance of 100 Ω . The microprocessor provides a current I_{μ} which is either 0 or 100 μ A.

The circuit is intended to work as follows. If $I_{\mu P}$ is 100 μA , Q1 goes into saturation, Q3 goes into active mode, and the lamp goes on. If $I_{\mu P}$ is 0, Q1 is in cutoff, and the lamp goes off.

Choose resistor values (R_{C1} , R_{C2}) so that the circuit functions as stated above. To receive full credit, you must clearly show that your design works for both lamp-on and lamp-off conditions.

LAMP ON:

Q3 active; Q1 saturation \Rightarrow Q2 cut-off because 0.3V

at Q2 base (supplied by Q1) is not sufficient for oncondition.

A SV $|c_1| \stackrel{>}{>} R_{c_2}$ $|c_1| \stackrel{>}{>} R_{c_2}$ $|c_2| \stackrel{>}{>} R_{c_2}$ $|c_3| \stackrel{>}{>} R_{c_2}$ $|c_3| \stackrel{>}{>} R_{c_3}$ $|c_3| \stackrel{>}{>} R_{c_3}$

Room for Extra Work

Set up LAMP OFF to check:

$$|u=0| = 0$$

$$|u=0| = 0.3 V$$

$$|B| = 0$$

$$|B| =$$

0.3 V is not sufficient to turn Q3 On, so cut off.

$$\beta l_{Br} = 50. \frac{5-0.7}{11.75} = 183.4 \text{ mA}$$

$$l_{CZ} = \frac{5-0.3}{10.75 \text{ le}} = 0.437 \text{ mA}$$

$$20 \quad \beta l_{Bz} > l_{CZ} \quad V$$