Name:	(please print)
Signature:	

ECE 3355 – Quiz #6 November 26, 2019

Keep this quiz closed and face up until you are told to begin.

- 1. This quiz is closed book, closed notes. You may use one 8.5" x 11" crib sheet, or its equivalent.
- 2. Show all work on these pages. Show all work necessary to complete the problem. A solution without the appropriate work shown will receive no credit. A solution which is not given in a reasonable order will lose credit.
- 3. Show all units in solutions, intermediate results, and figures.
- 4. If the grader has difficulty following your work because it is messy or disorganized, you will lose credit.
- 5. Do not use red ink. Do not use red pencil.
- 6. You will have 30 minutes to work on this quiz.

	/25

Room for Extra Work

In the circuit below, v_s is a small-signal input, and v_o is the output. The BJT is characterized by $\beta = 50$ and $V_{CE,SAT} = -0.2$ V. It is biased in the linear region, and it is known that $I_B = 67$ μA .

- a) Draw the small-signal model (ac model) for this BJT circuit. For this you may use any of the small-signal models discussed in class.
- b) Find the input resistance (the resistance seen by the input v_s) in the passband. Assume that in the passband, C_e is a short.
- c) Find the output resistance (the resistance seen by the output v_o) in the passband. Assume that in the passband, C_e is a short.

Room for Extra Work

In the circuit below, v_s is a small-signal input, and v_o is the output. The BJT is characterized by $\beta = 50$ and $V_{CE.SAT} = -0.2$ V. It is biased in the linear region, and it is known that $I_B = 67 \mu A$.

- a) Draw the small-signal model (ac model) for this BJT circuit. For this you may use any of the small-signal models discussed in class.
- b) Find the input resistance (the resistance seen by the input v_s) in the passband. Assume that in the passband, C_e is a short.
- c) Find the output resistance (the resistance seen by the output v_o) in the passband. Assume that in the passband, C_e is a short.

a) We will use hybrid pi, with $I_{\Pi} = \frac{V_{1}}{I_{18}} = \frac{25 \text{ mV}}{0.067 \text{ m}} = 373 \text{ R}$ We could also use $g_{\text{m}} = \beta/\Gamma_{\text{m}} = 0.134 \text{ [S]}$.

For the T-model, we would need $\Gamma_{\text{e}} = \frac{\Gamma}{\Gamma/(\beta+1)} = 7.31 \text{ S}$. $G_{\text{e}} = \frac{1.0 \text{ uf}}{1.0 \text{ uf}} = \frac{1.0 \text{ uf}}{373 \text{ s}} = \frac{1.0 \text{ uf}}{373 \text{ s}} = \frac{1.0 \text{ uf}}{3.3 \text{ kg}} = \frac{3.3 \text{ kg}}{3.3 \text{ kg}} = \frac{3.3 \text{ kg$

b) In the pass band, Ci -> short (otherwise we have no imput), Co -> short (otherwise we have no output), and Ce -> short (we are given this info). So...

Room for Extra Work