Name:	(please print)
Signature:	

ECE 3455 Exam 1 March 1, 2008

Exam duration: 90 minutes

- O You may have one 8 ½ x 11 in. "crib" sheet, written on both sides, during the quiz. You may have any calculator you choose, but no computers. No other notes or materials will be allowed.
- O Show all work necessary to complete the problem on these pages. A solution without the work shown will receive no credit.
- o Show units in intermediate and final results, and in figures.
- o If your work is sloppy or difficult to follow, points will be subtracted.

This exam has 10 pages, including the cover sheet. Raise your hand if you are missing a page.

2 _		_/25
3_		_/25
4 _	 Money	_/25

1. (25 points) We want to design a band-pass filter based on the circuit shown below. The Bode plot indicates schematically the specifications for frequency response that the amplifier is required to have.

- a) Find the transfer function, V_o/V_s for the circuit.
- b) Choose values for the resistors and capacitors, and for A_{vo} , such that (i) the input impedance Z_i approaches 22 k Ω at very high frequencies and (ii) the frequency response shown in the Bode plot is obtained.

a)
$$\vec{V_0} = A_{VO} \cdot \vec{V_i} \cdot \frac{y_0 C_0}{y_0 C_0 + R_0} = A_{VO} \vec{V_i} \cdot \frac{1}{1 + y_0 C_0 R_0}$$

:
$$\frac{\overline{V_o}}{\overline{V_s}} = A_{VO} \frac{\int w G R_i}{(1 + \int w G R_i)(1 + \int w G R_o)}$$

Room for extra work

So we have a zero at 0 rad/s; one pole each at 1/arci and 1/arci.

we have no constraint on Co or Ro so we'll choose Ro = 100 DZ

Let's evaluate Vo/Vs at w = 3000 rad/s => Vo = 25 dB

$$\frac{\overline{V_o}}{\overline{V_e}}\Big|_{w=3000} = Avo \cdot \frac{\int (3000)(1000)}{(1+j3000)(1000)(1+j3000)}$$

$$\frac{|V_0|}{|V_5|_{w}} = 3000 \text{ rade} = Avo \cdot (0.8877 - 10.0329)$$

$$= Avo \cdot (0.8883 \angle -2.12^\circ)$$

$$= Avo \cdot (0.8883 \angle -2.12^\circ)$$

$$= 20 \log |V_0| = 20 \log Avo \cdot 0.8883 = 28^\circ$$

$$\log Avo \cdot (0.8883 = 25^\circ) = \log Avo + \log 0.8883$$

$$\Rightarrow Avo = 20.02$$

2. (25 points) A feedback resistor, R_F , is added to the circuit of Problem 1, as shown below. Find the transfer function V_o/V_s with R_F in place. (Just find the transfer function; you do not need to re-calculate R, C, and A_{vo} to get the proper Bode plot behavior.)

$$V_{s} = A_{vo}V_{i} \frac{1}{1+J\omega GRo}$$

$$V_{i} + \frac{V_{i} - V_{s}}{V_{l}\omega G} + \frac{V_{i}(1-A_{vo})}{R_{f}} = 0$$

$$V_{i} = V_{s} \frac{J\omega GV_{s}}{R_{i} + J\omega G} + \frac{J-A_{vo}}{R_{f}}$$

$$= V_{s} \frac{J\omega GV_{s}R_{f}}{R_{f} + R_{i}(1-A_{vo}) + J\omega GR_{s}R_{f}}$$

$$V_{i} = V_{s} \frac{J\omega GV_{s}R_{f}}{R_{f} + R_{i}(1-A_{vo}) + J\omega GR_{s}R_{f}}$$

$$V_{i} = V_{s} \frac{J\omega GV_{s}R_{f}}{R_{f} + R_{i}(1-A_{vo}) + J\omega GR_{s}R_{f}}$$

$$V_{i} = V_{s} \frac{J\omega GV_{s}R_{f}}{R_{f} + R_{i}(1-A_{vo}) + J\omega GR_{s}R_{f}}$$

:
$$\frac{\overline{V_o}}{\overline{V_e}} = A_{VO} \frac{\int w G R \cdot R_F}{(R_F + R_i (1 - A_{VO}) + \int w G R \cdot R_F)(1 + \int w G R_o)}$$

- 3. (25 points) The transfer function for a particular amplifier is shown below.
- a) State clearly the poles and zeros of the transfer function.
- b) On the paper provided on the next page, plot the **phase** Bode plot for this transfer function.

$$T(\omega) = -\frac{6.7 \times 10^{-2} * (1 + j\omega/500)^{2} (2 + j\omega/4000)}{(1 + j\omega/800)(10000 + j\omega)^{2} (j\omega)}$$

$$2 = 0 \quad \text{red/s} \quad \text{Double Zero}$$

$$2 = 0 \quad \text{red/s} \quad \text{Double Role}$$

$$2 = 0 \quad \text{red/s} \quad \text{Double Role}$$

$$2 = 0 \quad \text{red/s} \quad \text{Double Role}$$

$$2 = 0 \quad \text{Role}$$

$$3 = 0 \quad \text{Role}$$

$$4 = 0 \quad \text{Role}$$

$$5 = 0 \quad \text{Role}$$

$$6 = 0$$

For
$$w \to 0$$
, $T(w) \to \frac{-6.7 \times 10^{-2} (1)^2 (2)}{(1)(1000)^2 (jw)}$
 $\Rightarrow LT(w) \to \frac{1-1}{3} = 90^{\circ}$
 $w \to \infty \quad 7(w) \to \frac{-6.7 \times 10^{-2} (1000)^2 (1000)}{(1000)^2 (100)^2 (100)}$
 $LT(w) \to \frac{1-1}{3} = 90^{\circ}$

- 4. (25 points) The op amps in the circuit below are "ideal". By varying R_F , a range of voltage gain (v_O/v_I) can be obtained.
- a) Find the gain v_0/v_1 in terms of the various resistances.
- b) Considering values of R_F that are positive or 0, what are the maximum and minimum values of gain that can be obtained by varying R_F ?

$$v_{02} = -\frac{2R}{R}v_{01}$$
 $v_{0} = -\frac{2R}{R}v_{02} = \frac{4v_{01}}{4v_{02}}$
 $v_{01} = \frac{1}{4}v_{02}$

KCL at (A)

$$\frac{v_{ol}}{R} + \frac{v_{r}}{R_{i}} + \frac{v_{o}}{R_{F}} = 0$$

Room for extra work

b) Consider extremes in Par:

$$R_{p} = \infty \Rightarrow N_{01} = -D_{I} R_{i}$$

$$lno connection V_{02} = -2N_{01} = 2N_{I} R_{i}$$

$$through R_{F}) V_{0} = -2N_{02} = -4N_{I} R_{i}$$

We can look at this mathematically as well: