Name:	 	 	_(please j	orint)
Signature:				

ECE 3355 – Quiz #1 January 30, 2020

Keep this quiz closed and face up until you are told to begin.

- 1. This quiz is closed book, closed notes. You may use one 8.5" x 11" crib sheet, or its equivalent.
- 2. Show all work on these pages. Show all work necessary to complete the problem. A solution without the appropriate work shown will receive no credit. A solution which is not given in a reasonable order will lose credit.
- 3. Show all units in solutions, intermediate results, and figures.
- 4. If the grader has difficulty following your work because it is messy or disorganized, you will lose credit.
- 5. Do not use red ink. Do not use red pencil.
- 6. You will have 30 minutes to work on this quiz.

	-	/25

Room for Extra Work

The figure below shows a source (v_s) , a voltage amplifier, and a load (R_L) . The source resistance is 0.

- a) Find an equivalent transconductance amplifier that has the same input resistance R_{in} and output resistance R_{out} as the given amplifier, and that provides the same load current i_o to the load R_L .
- b) Draw your transconductance amplifier circuit model, showing input resistance, output resistance, and gain parameter clearly.
- c) We wish to design the original voltage amplifier to have an input resistance of $100 \text{ k}\Omega$ by adjusting the value of R_f . Can this be done? If so, what value of R_f should be used? If not, state why this is not possible.

Room for Extra Work

The figure below shows a source (v_s) , a voltage amplifier, and a load (R_L) . The source resistance is 0.

- a) Find an equivalent transconductance amplifier that has the same input resistance R_{in} and output resistance R_{out} as the given amplifier, and that provides the same load current i_o to the load R_L .
 - b) Draw your transconductance amplifier circuit model, showing input resistance, output resistance, and gain parameter clearly.
 - c) We wish to design the original voltage amplifier to have an input resistance of $100 \text{ k}\Omega$ by adjusting the value of R_f . Can this be done? If so, what value of R_f should be used? If not, state why this is not possible.
- a) start with a transconductance amplifier:

Find Rin of voltage amphilier:

$$l_s = \frac{v_i}{R_i} + \frac{v_{i-10}v_i}{R_f} = v_i(\frac{1}{R_i} - \frac{q}{R_f})$$

$$= v_s(\frac{1}{R_i} - \frac{q}{R_f})$$

M

$$l_{8}^{2} = V_{5} \left(\frac{1}{10R} - \frac{q}{q_{0}R} \right) = 0 \Rightarrow R_{10} = \infty$$

Gain parameter:

7)

original amp:
$$2s = \frac{10 \text{ Vi}}{R_0 + R_L} = \frac{10 \text{ Vs}}{2200}$$

$$\frac{10 \, v_s}{2200} = \frac{G_{\rm m} \, 200}{2200} \Rightarrow G_{\rm m} = \frac{10}{200} = 0.05 \, \frac{A}{V}$$

$$v_{s}(t) = v_{i} + v_{i}(t) + v_{i}(t) = v_{i}(t) + v$$

+7

Room for Extra Work

C)
$$l_s = \frac{v_s}{R_i} + \frac{v_{s-10}v_s}{R_f} \Rightarrow R_{in} = \frac{v_s}{l_s} = (R_i - \frac{q}{R_f})^{-1}$$

$$(L_i - \frac{q}{R_f})^{-1} = 10^5 \Rightarrow 10^{-4} - \frac{q}{R_f} = 10^{-5}$$

$$\Rightarrow R_f = \frac{-q}{10^5 - 10^{-4}} = 100 \text{ kg}$$

So yes, we can do this!