Name:	(please print)
Signature:	

ECE 3355 Quiz #1 June 14, 2017

- 1. You may have an $8 \frac{1}{2} \times 11$ " crib sheet, but no other materials, and no communication devices of any kind.
- 2. Show all work necessary to complete the problem on these pages. If you go on to another page, indicate clearly where your work can be found. A solution without the work shown will receive no credit.
- 3. Show all units in expressions and figures.
- 4. Do not use red ink.
- 5. You will have 25 minutes to work on this quiz.

Room for extra work

Two amplifiers are cascaded as shown, with a resistor R_x connecting the two. A source v_s and load R_L are also shown. The source resistance is 0. The gain parameters G_m and R_m are not specified, but it is known that when $v_s = 10$ mV, $v_x = -8.653$ V and $v_o = -893.86$ mV.

- a) Find a single equivalent amplifier model that duplicates the behavior of the cascaded amplifiers and resistor R_x . Be sure to include the input and output resistances in your model.
- b) Find the gain parameters G_m and R_m .

Two amplifiers are cascaded as shown, with a resistor R_x connecting the two. A source v_s and load R_L are also shown. The source resistance is 0. The gain parameters G_m and R_m are not specified, but it is known that when $v_s = 10$ mV, $v_x = -8.653$ V and $v_o = -893.86$ mV.

- a) Find a single equivalent amplifier model that duplicates the behavior of the cascaded amplifiers and resistor R_x . Be sure to include the input and output resistances in your model.
- b) Find the gain parameters G_m and R_m.

We have a small Ro, so transresistance or voltage amplifier is a good choice.

$$V_s V_i > 3300 \Omega$$
 $V_s V_i > 3300 \Omega$
 $V_s V_i > 3300 \Omega$

We have v_0 : Avo v_i $\frac{200}{220}$ = Avo v_s $\frac{200}{220}$ = Avo v_s (0.90909).
This is not the same v_i as in the original clet,

Now we look at the original circuit.

Room for extra work

Room for extra work

$$V_0 = -[2iii]^2 \frac{200}{240} \quad l_1^2 = G_{11} l_1^2 \frac{470}{2400 + 470}$$
 $V_1^2 = V_S \frac{2200}{2400 + 1000}$
 $V_2 = -[2iii]^2 \frac{200}{2400} \quad V_S \left(\frac{200}{2400}\right) \left(\frac{2200}{3400}\right)$
 $V_0 = -[2iii] l_1 l_2 l_3 \left(0.1100\right)$

But now

 $A_{V0} l_3 \left(0.90909\right) = -[2iii] G_{11} l_{10} l_$

(close!) L Check: No= Avo. Vs. 200 = -893,7 mV

So Avo = - Ru Gm (0,121) = -98,312 V