Electronics: ECE 3355 Homework 2

Sedra and Smith, 7th Ed., Chapter 1: Problems 1.43, 1.44, 1.47, 1.48, D1.50, 1.56, 1.58 From handout below: Problems E2.1, E2.2, E2.3, E2.4

E2.1. A compact disc (CD) player laser pick-up provides a signal output of $10[mV]_{pp}$ and has an output resistance of $10[k\Omega]$. The pick-up is to be connected to a speaker whose equivalent resistance is $8[\Omega]$.

- a) Calculate the voltage that would be delivered to the speaker if the speaker were connected directly to the pick-up.
- b) Assume that the speaker needs 20[V]_{pp} to deliver clear acoustical output. Design an equivalent circuit for an amplifier that would deliver this output when connected between the pick-up and the speaker.

E2.2. An amplifier has been connected as shown below, with a signal source and a load connected. In addition, a dc voltage source (V_F) and a resistor (R_F) have been attached to provide feedback. Find the input resistance seen by the signal source with the feedback in place.

E2.3. A device, shown in Figure 3.1, can be modeled by a current source in parallel with a resistance. The relationship between the current through the device, i_X , and the voltage across the device, v_X , is given in the plot in Figure 3.2.

- a) Find a model for the device that would be valid when current is in the range $1[mA] < i_X < 5[mA]$. This model must have numerical values for the current and resistance, and the polarities with respect to v_X and i_X should be shown in a diagram.
- b) A voltage source is applied across the device so that $v_X = 10[V]$. Find the power delivered by the device in this situation.

Remember to use lower-case variables for voltage and current.

E2.4. A circuit is shown in Figure 1. The equivalent circuits for amplifiers A, B, and C, in this circuit are shown in Figures 2, 3, and 4, respectively. Find and draw a single amplifier equivalent circuit that could be used to replace amplifiers A, B, and C.

Selected Numerical Solutions:

1.43 a) 82.64 = 38.34[dB]; b) 25 = 27.96[dB]; c) $826.4 \times 10^{-3} = -1.656[dB]$ 1.44 38.42[dB]; 71.43[dB]; 84.9[mV_{rms}]; 100[mW] 1.47 52.8[dB] vs 57.4[dB]1.48 SABL

1.58 $R_i/(1+R_ig_m)$

E2.1. There are many possible solutions. One possible solution would be a transconductance amplifier with $G_{msc} = 900[S]$; $R_i = 10[k\Omega]$; $R_o = 10[\Omega]$

E2.2. –43[Ω]

E2.3. a) The solution is a Norton equivalent. The sign of the current source depends on the reference polarity chosen, but the magnitude is 25[mA]. The resistance is $-250[\Omega]$. b) $p_{DEL,DEV} = -2[mW]$.

E2.4. Transresistance amplifier, with $R_{IN} = 0$, $R_{OUT} = 0$, and $R_{MOC} = -117[\Omega]$.