## Electronics: ECE 3355

## Homework 2

Sedra and Smith, $7^{\text {th }}$ Ed., Chapter 1: Problems 1.43, 1.44, 1.47, 1.48, D1.50, 1.56, 1.58 From handout below: Problems E2.1, E2.2, E2.3, E2.4

E2.1. A compact disc (CD) player laser pick-up provides a signal output of $10[\mathrm{mV}]_{\mathrm{pp}}$ and has an output resistance of $10[\mathrm{k} \Omega]$. The pick-up is to be connected to a speaker whose equivalent resistance is $8[\Omega]$.
a) Calculate the voltage that would be delivered to the speaker if the speaker were connected directly to the pick-up.
b) Assume that the speaker needs $20[\mathrm{~V}]_{\mathrm{pp}}$ to deliver clear acoustical output. Design an equivalent circuit for an amplifier that would deliver this output when connected between the pick-up and the speaker.

E2.2. An amplifier has been connected as shown below, with a signal source and a load connected. In addition, a dc voltage source $\left(V_{F}\right)$ and a resistor $\left(R_{F}\right)$ have been attached to provide feedback. Find the input resistance seen by the signal source with the feedback in place.


E2.3. A device, shown in Figure 3.1, can be modeled by a current source in parallel with a resistance. The relationship between the current through the device, $i_{X}$, and the voltage across the device, $v_{X}$, is given in the plot in Figure 3.2.
a) Find a model for the device that would be valid when current is in the range $1[\mathrm{~mA}]<i_{X}<5[\mathrm{~mA}]$. This model must have numerical values for the current and resistance, and the polarities with respect to $v_{X}$ and $i_{X}$ should be shown in a diagram.
b) A voltage source is applied across the device so that $v_{X}=10[\mathrm{~V}]$. Find the power delivered by the device in this situation.
Remember to use lower-case variables for voltage and current.


E2.4. A circuit is shown in Figure 1. The equivalent circuits for amplifiers A, B, and C, in this circuit are shown in Figures 2, 3, and 4, respectively. Find and draw a single amplifier equivalent circuit that could be used to replace amplifiers $\mathrm{A}, \mathrm{B}$, and C .


Selected Numerical Solutions:
1.43 a) $82.64=38.34[\mathrm{~dB}]$; b) $25=27.96[\mathrm{~dB}]$; c) $826.4 \times 10^{-3}=-1.656[\mathrm{~dB}]$
$1.4438 .42[\mathrm{~dB}] ; 71.43[\mathrm{~dB}] ; 84.9[\mathrm{mV} \mathrm{rms}] ; 100[\mathrm{~mW}]$
$1.4752 .8[\mathrm{~dB}]$ vs $57.4[\mathrm{~dB}]$
1.48 SABL
$1.58 R_{i} /\left(1+R_{i} g_{m}\right)$
E2.1. There are many possible solutions. One possible solution would be a transconductance amplifier with $G_{m s c}=900[\mathrm{~S}] ; R_{i}=10[\mathrm{k} \Omega] ; R_{O}=10[\Omega]$

## E2.2. $-43[\Omega]$

E2.3. a) The solution is a Norton equivalent. The sign of the current source depends on the reference polarity chosen, but the magnitude is $25[\mathrm{~mA}]$. The resistance is $-250[\Omega]$.
b) $p_{D E L, D E V}=-2[\mathrm{~mW}]$.

E2.4. Transresistance amplifier, with $R_{I N}=0, R_{\text {OUT }}=0$, and $R_{M O C}=-117[\Omega]$.

