# Transistors: FET & BJT Basic Concepts

#### Summary of Key Points

- The basic device physical structures (S-G-D for FET and E-B-C for BJT)
- The basic steps in fabrication these transistors:
  - elements of lithography: photoresist, mask, projection, baking, developing...
  - altering the semiconductors by doping (ion implantation, diffusion...)
  - oxidation, deposition of insulator layer for FET channel
  - metalization (metal deposition), Ohmic contact
- The basic concepts of the device operation of these transistors
  - for FET: how gate voltage can control the current between the source and drain (Gate bias voltage threshold, channel conductivity above and below threshold, pinch-off, source-drain current and current saturation)
  - for BJT: how base current can control the emitter majority carrier current, and the transport (base transport factor) to collector
- The physical principles in the operation of these transistors:
  - for FET: carrier behavior in the channel as a function of gate voltage: weak-field screening, depletion, inversion; mobile charge, non-mobile charge; related C-V characteristics, role of oxide (or insulator) capacitance;
  - for BJT: effects of base current (both majority and minority carriers).
  - for both: carrier mobility, temperature effects, doping effects
- Fundamental engineering principles of these transistors:
  - for FET: doping type, level, profile, oxide or insulator capacitance (dielectric constant, thickness) and efficiency in gate voltage
  - for BJT: doping type, level, profile; base length, carrier mobilities in base, diffusion lengths;
     minority carrier behaviors in emitter, emitter length, and emitter efficiency

## Bipolar Junction Transistor An overview

#### Transistor: a 3-terminal device



#### Signal control in voltage mode or current mode



#### **Voltage control**

Electric field is the "lever"

→ Field-effect transistor

#### **Current control**

Injected (gate) current is the "lever"

→ Bipolar junction transistor

#### **Bipolar Junction Transistor Summary**





From the first transistor...

To today state-of-the-art ...

# Bipolar device: a device that involves carriers of both polarities - opposite: unipolar

Find an example of unipolar transistors

# The key difference between FET and BJT

#### FET



#### **BJT**



Same type of carriers for emitter and collector, opposite type for base

## FET vs BJT lateral vs planar (usually)





#### FET vs. BJT: main features

Source (S), gate (G), drain (D)

IT'S ALL IN THE GATE CHANNEL!

Channel (underneath the gate) provides

carriers for S-D

Channel serves as a transport medium (D

current comes from current provided from S) current comes from E carriers)

But G does NOT provide (much) current to

S-D current

There is a "critical" G voltage (threshold

bias VT) for the transistor to be ON

A "relatively" abrupt change from non-

conductive to conductive state at VT

Above threshold, channel charge

accumulation is linear vs. gate voltage

Device design and engineering: gate oxide

(or insulator) and channel

Emitter (E), base (B), collector (C)

IT'S ALL IN THE BASE!

Base does NOT contribute (much)

carriers nor current to the E-C current

Base serves as a transport medium (C

There is a B current, usually small but

**crucial** to the control of currents

between F and C.

There is no need for any "threshold" B

voltage or current for the transistor to be ON

B current controls E-C current like a "lever"

(small force lifts big force) – gradual

E current is exponential vs. B voltage. Linear

control is by B current

Device design and engineering: B length,

carrier diffusion, E doping, length, carrier

diffusion

## I-V characteristics of FET vs. BJT





## BJT basic principle



- Base-emitter current is used to draw a large population of majority carrier from emitter to the base
- The base is engineered such that these carriers do not disappear in the base, but transferred to the collector as many as possible
- To do that, we need:
  - short base/large diffusion length
  - low density of opposite carriers (minority) in the base
  - low minority current in the emitter as well

#### What are the performance parameters?





Which one is the better transistor?

### Performance Parameter Concepts



How many % of emitter current is "useful" current?

$$\gamma = \frac{I_{Ep}}{I_{Ep} + I_{En}} = \frac{1}{1 + I_{En} / I_{Ep}}$$

Emitter efficiency

How many % of emitter majority carrier get to collector?

$$\alpha_T = \frac{I_{Cp}}{I_{Ep}}$$

Base transport factor

How many % of emitter total get to collector?

$$\alpha = \gamma \alpha_T = \frac{I_{Cp}}{I_{Ep} + I_{En}}$$

Common-base current gain

#### Example





Common-base current gain: (assume

mostly holes in collector)

$$\alpha \approx \frac{25}{100} = 0.25$$

Approx. base transport factor

$$\alpha_T \approx \frac{25}{100 - 10} = 0.28$$

Amplification

$$\gamma = \frac{100 - 10}{100} = 0.9$$

$$\beta \approx \frac{\alpha}{1-\alpha} = \frac{0.25}{1-0.25} = 0.33$$

$$\alpha \approx \frac{99}{100} = 0.99$$

$$\alpha_T \approx \frac{99}{100 - 0.1} = 0.991$$

$$\gamma = \frac{100 - 0.1}{100} = 0.999$$

$$\beta \approx \frac{\alpha}{1-\alpha} = \frac{0.99}{1-0.99} = 99 \ (\approx 100)$$

### Amplification factor

- Most emitter are efficient:  $\gamma \sim 1$
- Base transport factor:

$$\alpha_{T} = \left| \frac{I_{Cp}}{I_{Ep}} \right| \approx \frac{\left| \frac{1}{\sinh \left[ W_{B} / L_{Bp} \right]} + qAv_{T} p_{2} \coth \left( W_{B} / L_{Bp} \right) \right|}{\left( qAv_{T} p_{1} \coth \left( W_{B} / L_{Bp} \right) - qAv_{T} p_{2} \frac{1}{\sinh \left[ W_{B} / L_{Bp} \right]} \right)} \approx \frac{qAv_{T} p_{1}}{qAv_{T} p_{1} \coth \left( W_{B} / L_{Bp} \right)}$$

$$\alpha_T \approx \frac{1}{\cosh(W_B / L_{Bp})}$$

Majority current at emitter

$$\beta \text{ (or } h_{FE}) = \frac{\alpha}{1-\alpha} = \frac{1}{1/\gamma \alpha_T - 1} \approx \frac{1}{\cosh(W_B/L_{Bp}) - 1} \approx \frac{1}{1+W_B^2/2L_{Bp}^2 - 1} = \frac{2L_{Bp}^2}{W_B^2}$$

Example: base width = 2 um, diffusion length = 20 um

$$\beta \approx \frac{2L_{LBp}^2}{W_B^2} = \frac{2 \times 400}{4} = 200$$

How small can it get?

Image of sub-micron HBT



## How many different semiconductors can be put in?



## HBT: how complex can the base be?

#### Detailed Cross Section of Hitachi HBT



Fig. 4. The detailed structure of the selective epitaxial SiGe base and the poly-SiGe base-contact.



## How complex can the fabrication be?



### Example: an extreme design



## Example: power BJT and the physics of breakdown effects



#### Example: high speed low noise BJT



#### Summary

- A crude beginning (1947) to "undreamed of" performance
- Progress from all fronts:
  - materials
  - fabrication technology
  - advanced in design and modeling
  - advanced scientific understanding
- ... yet, the fundamental principle remains the same: control of majority carriers in the base