P-N Diodes & Applications Outline

- Major junction diode applications are
 - Electronics circuit control
 - Rectifying (forward mode)
 - Special break-down diodes: Zener and avalanche
 - Switching
 - Circuit tuning (varactor)
 - Tunneling diodes (negative resistance)
- Optoelectronics (intro only more in chapter 8)
 - Photodiodes, photodetectors
 - Solar cells
 - Lasers, LEDs

Examples: a company product line

<u>BUTTON DIODES</u> (Molded Products and Dish Diodes)

<u>**TRANSIENT</u>** VOLTAGE SUPPRESSORS (35 and 50 Amp)</u>

<u>FULL WAVE</u> BRIDGE RECTIFIERS (1 to 50 Amp)

FAST RECOVERY BRIDGE RECTIFIERS (1 to 35 Amp)

<u>**POWER</u>** RECTIFIER MODULES (Single and Three Phase)</u>

<u>ULTRAFAST</u> RECOVERY DIODES

SUPER EFFICIENT RECTIFIERS

<u>SCHOTTKY</u> BARRIER RECTIFIERS

FAST RECOVERY DIODES

<u>GENERAL PURPOSE</u> RECTIFIERS

HIGH VOLTAGE DIODES

Operational modes of diodes

Voltage/Current	Small signal current	Large injection current	Photoinjection /emission
Forward	switching, mixing, rectifying (small signal processing)	switching, mixing, rectifying (power devices)	Optoelectronics: lasers, LEDs
Reverse	varactor, rectifying		Pin photodiode, Solar cell
Reverse breakdown	switching	voltage clamp (TVS)	Avalanche PD

- Design features/parameters: materials, dopants and doping concentration, device configuration and geometry, metallization/contact.
- In the market, people make discrete component diodes or simple diode IC's tailored for specific applications

Rectifiers

Utilizes the forward bias property

Prefer low series resistance, low differential impedance: <u>why? how?</u>
Prefer low turn-on voltage <u>why? how?</u>

On reverse: prefer high break down voltage, low leakage current <u>why? how?</u>
Design issues:

•How to make high current?

- •How to prevent unwanted breakdown (punch through)
- •How to trade-off between the Vbr and low series resistance?
- •How to make the most of diode geometry?

Large reverse bias

- Breakdown: Not the same as broken- although many diodes can be damaged with large reverse breakdown current
- A regime where simply the low voltage drift and diffusion current model is NOT sufficient
- Involve quantum tunneling effect and high field transport effects (non classical behaviors)

Large reverse bias (cont.)

Two major effects:

- Tunneling through the band; Zener
- Avalanche: impact ionization

Both are quantum mechanical effects – cannot be explained with classical transport. Tunneling involves coherent wavefunction: particles do not change energy in the process; avalanche is a relaxation process, particles lose energy to excite others.

Zener diodes

Operate in reverse/breakdown mode

Avalanche diodes

Avalanche region is undoped or very lightly doped (so as not to quench carriers)

One significant application is photodetection

Note: Temperature behavior (Zener vs. avalanche) - How can one tell which breakdown mechanism is dominant

Basics of PIN and APD

Switching Diodes

- Going from "ON" (conducting) to "OFF" (non-conducting) and vice versa
- Design preference for either speed or power (less common than speed applications)
- A DC bias voltage can be used to switch a signal through or block it.
 - How fast can the switch be operated?
 - What is the signal bandwidth?
- Most common: from low/medium frequency (e. g. audio) to RF (some special types for microwave)
- Ultrahigh speed (nanosecond to sub-ns switching time)
- Design considerations:
 - How to make it so fast? short-base configuration, short carrier lifetime

Varactors

- Specialized design for applications: VCO (voltage-controlled oscillators), amplifiers, tuners and frequency synthesizers, PLL (phase-locked loop).
- Non-constant doping profile
- Designed for range and voltage dependence behavior (power coefficient)
- Designed for high frequency applications (microwave)

Varactor Design & Apps

- Use in low current mode (reverse)
 - A voltage-tunable capacitor, from a few pF to 1000's of pF)
 - Circuit parameterization formula:

$C_J \propto V_R^{-n}$

- Varactor diodes can be used for frequency multiplying in RF or microwave band; sometime used as active filter (fine tuning the poles of the filter)
- Engineering design considerations:
 - How to make a large dynamic range? (large range of capacitance)
 - Doping profile to design voltage dependence (e. g. n=2). Linear, graded, abrupt, hyperabrupt.

Esaki Tunneling Diodes

本半導体歷史館

Semiconductor History Museum of Japan

日

T.C.L.G. SOLLNER, E.R. BROWN, and H.Q. LE

Microwave and Millimeter-Wave Resonant-Tunneling Devices

Applications: switching, high-speed oscillators

Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits T. C. L. G. Sollner¹, E. R. Brown¹, W. D. Goodhue¹ and H. Q. Le¹

Applied Physics

Letters

