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A) Solve Laplace’s equation subject to appropriate B.C.s.:

V2®(x,y) =0

B) Find the transverse electric field: e (x,y) = —VCD(x,y)

—

C) Find the total electric field: E(x,y,z)=¢,(x,y)e, k, =k

D) Find the magnetic field: H :l(iéxﬁ); + z propagating
n

Note: The only frequency dependence is in the wavenumber k_= «.



Assume wave going in +z direction.

To find the TEM mode fields, we need to solve:

VO(p,4)=0; D(a)=V,

®(h) =0
z
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Note:
This formula does
not account for
conductor loss.




Attenuation:

a=a,+a,

Dielectric attenuation: X

TEM: o, = k" . _ _
Geometry for dielectric attenuation
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Attenuation:

a=a,+a,

Conductor attenuation:

_B(0)
C 2P0
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(We assume Z,is real here.)

Geometry for conductor attenuation

(We ignore dielectric loss here.)



Conductor attenuation:
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Conductor attenuation:
_R(0)
© 2P
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Let’s redo the calculation of conductor attenuation Y
using the Wheeler incremental inductance formula.

Wheeler’s formula:

acond . RS dZO Mo z

¢ =
2Z,n ) dl Je, g, ==¢

Geometry for conductor attenuation

The formula is applied for each conductor and the conductor
attenuation from each of the two conductors is then added.

In this formula, d¢ (for a given conductor) is the distance by which the
conducting boundary is receded away from the field region.






We can also calculate the fundamental per-unit-length
parameters of the lossy coaxial line.

From previous calculations:

—

L — Zéossless /Jg’

(From Notes 3) - C =/ ue’ /Z(I)OSSleSS

G =(wC)tans

—

(From Notes 7) R = . (ZZéOSSZeSS)

The “lossless” superscript means that we ignore all loss.

X
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Approximate attenuation in dB/m

Frequency | RG59
Coax
1 [MHz] 0.01
10 [MHZz] 0.03
100 [MHz] | 0.11
1 [GHZ] 0.40
5 [GHZz] 1.0
10 [GHZ] 1.5
20 [GHZ] 2.3
50 [GHZz] OM*
100 [GHZz] OM*

*OM = overmoded

B (from Wikipedia)

Z, =750

a=0.292 mm
b=1.85mm
g, =225

/. =29.7 GHz (TE,, waveguide mode)
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Power flow at z = 0:

(Z, is assumed to be real here.)

Note: At dielectric breakdown E




We look at the higher-order modes* of a coaxial line.

The lowest waveguide mode is the TE,; mode.

Sketch of field lines for TE,; mode

*Here the term “higher-order modes”
means the waveguide modes that exist in
addition to the desired TEM mode.




TE :

Zl

Veh (p,¢)=—k k. (p,9)

eigenvalue problem

k:=k’—k’

The solution in cylindrical coordinates is:

b (p.d) = {Jn(kcp)} {sin(wﬁ)}

Y,(k.p) | |cos(ng)

Note: The value n» must be an integer to have unique fields.



n=0 J (0) is finite

J (x)

n

10.6
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Jn(x),\,x”(_] n=0,1,2,.., x>0 J (x)~ ,[—cos L E
2"n! " 2
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Y (0) isinfinite

4 5 6 7 8

Y, (x) ~ z[m(ﬂw}, ¥ =0.5772156, x — 0
T

2

X

Yn<x)~—%<n—1>![

j ,n=12,3,..., x>0



We choose (somewhat arbitrarily) the y
cosine function for the angle variation.

Wave traveling in +z direction:

h(p.4.z)=h.(p.p)e’

h.(p,¢) =cos(ng)(AJ,(k.p)+ BY,(k.p))

The cosine choice corresponds to having the transverse electric field £, being an even
function ofg, which is the field that would be excited by a probe located at ¢ = 0.



Boundary Conditions:

E,(a.9)=0  E,(b.9)

[, =0l )
o 1 (oM, o,
’ jwe \ &z Op
N OH . _0
op »
Hence

k.(AJ!(k,a)+ BY(ka))=0

k.(AJ!(kb)+ BY! (kb))

0

Note:
The prime denotes derivative with
respect to the argument.




AJ (ka)+BY!(ka)=0
AJ (k.b)+BY(kb)=0

In order for this homogenous system of
equations for the unknowns 4 and B to

have a non-trivial solution, we require the
determinant to be zero. z

J,(ka) Y/(ka)
J, (kD) Y,(kb)

et(k,) =

Hence

S, (k)Y (kb)—=J, (kb)Y (ka)=0



J (ka)Y (kb)—J (kb)Y (ka)=0

Denote

x=ka

Then we have:

F(x;n,b/a)=J.(x)Y,(x(b/a))—=J,(x(b/a))Y(x)=0

For a given choice of n and a given value of b/a, we
can solve the above equation for x to find the zeros.



A graph of the determinant reveals the zeros of the determinant.

F(x;n,b/a)

Note:

These values are not the same as
those of the circular waveguide,
although the same notation for the
zeros is being used.

N\ X

TE,y mode: k a= xl'l
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Approximate solution:

k.a= -
1+b/a

The TE,, mode is the
dominant higher-order
mode of the coax (i.e., the
waveguide mode with the
lowest cutoff frequency).

0.6

0.5

0.4

0.3

0.2

0.1

Exact solution

Figure 3.16 from the Pozar book
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Lossless case:

g, —g=¢ kZ =\/k2 —kcz (k isrealhere)

k‘f=fc =k

Use formula on previous slide

=2 f e =k, /

f. = k. = I 1 kca:( : j ¢ k.a ¢ =2.99792458 x10° [m/s]
2\ e 2mwa \Jue 2ra \/gj

TE,, mode of coax:




Ao

At the cutoff frequency, the

wavelength (in the dielectric) is then:

Ay

SO

R
A
z7m(1+b/a)
=7Z'(a-|-b)

~ b

1

l+b/a

A

2b

J

Compare with the
cutoff frequency
condition of the

TE,, mode of RWG:

2a =1,

b| &
a
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Example 3.3, p. 133 of the Pozar book:

RG 142 coax:

a =0.035 inches =8.89 x10™* [m]

b=0.116 inches =29.46x10™* [m]
. =22

:>b/a—331
‘ a\/é‘r 7T 1+b/a

f. ~16.8 [GHz]
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