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Grounded Dielectric Slab

Discontinuities on planar transmission lines such as 
microstrip will radiate surface-wave fields. 

Substrate
(ground plane below)

Microstrip line

Surface-wave field

It is important to understand these waves.

Note:
Surface waves can also be used as a propagation mechanism for microwave and millimeter-

wave frequencies. (The physics is similar to that of a fiber-optic guide.)
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Grounded Dielectric Slab

Goal: Determine the modes of propagation and their wavenumbers.

Assumption: There is no variation of the fields in the y direction, and 
propagation is along the z direction.
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Dielectric Slab

TMx & TEx modes: Note:
These modes may also be 
classified as  TMz and TEz.
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Surface Wave

The internal angle is larger than the critical angle, so there is 
exponential decay in the air region. 

( )1 1 0 1 0sin sinz ck k k k kθ θ= > =

The surface wave is a “slow wave”:

1 cθ θ>

( )1/22 2 2 2
0 0 0 0x z z xk k k j k k jα= − = − − = −Hence
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TMx Solution
Assume TMx:
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TMx Solution (cont.)

Then we have:
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x h≤

x h≥

1 1cos( )zjk z
x xE e k x−=

0
0

xz xjk z
xE Ae e α−−=

Applying boundary conditions at the ground plane, we have:

TMx Solution (cont.)

0xE
x

∂
=

∂

This follows since 

Note: on PEC 
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Boundary Conditions

BC 1) 0 1 @x xD D x h= =

0 1x r xE Eε=

0 1x xE E
x x

∂ ∂
=

∂ ∂

0 1 @z zE E x h= =BC 2) 

Recall: 

⇒

⇒
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Boundary Conditions (cont.)

These two BC equations yield:
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Divide second by first:

0 1 1
1 ( ) tan( )x x x
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− = −

0 1 1tan( )x r x xk k hα ε =

or
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Final Result: TMx

This may be written as:

2 2 2 2 2 2
0 1 1tanr z z zk k k k k k hε  − = − − 

This is a transcendental equation for the unknown wavenumber kz.
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Final Result: TEx

Omitting the derivation, the final result for TEx modes is:

This is a transcendental equation for the unknown wavenumber kz.

( )2 2 2 2 2 2
0 1 1

1 cotz z z
r

k k k k k k h
µ

− = − − −
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Graphical Solution for SW Modes
Consider TMx:

Define:

0 1 1tan( )x r x xk k hα ε =

1

0

x

x

u k h
v hα

≡
≡

1 tan
r

v u u
ε

=

or

Then

0 1 1
1 ( ) tan( )x x x

r

h k h k hα
ε

=
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Graphical Solution (cont.)

Hence

2 2
1

2 2
0

z

z

u h k k

v h k k

= −

= −

2 2 2 2
1

2 2 2 2
0

( )
( )

z

z

u h k k
v h k k

= −

= −
Add

We can develop another equation by relating u and v:

2 2 2 2 2
1 0

2 2
0 1

( )
( ) ( 1)

u v h k k
k h n

+ = −

= − 1 1 0/ r rn k k ε µ≡ =

where
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2 2 2
0 1( ) ( 1)R k h n≡ −

2 2 2u v R+ =

Define

Then

Graphical Solution (cont.)

Note:
R is proportional to frequency.

2
0 1( ) 1R k h n= −
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Summary for TMx Case

Graphical Solution (cont.)

1 tan
r

v u u
ε

=

2 2 2u v R+ =

2 2
1 1

2 2
0 0

x z

x z

u k h h k k

v h h k kα

≡ = −

≡ = −
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Graphical Solution (cont.)
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Note: The TM0 mode exists at all frequencies (no cutoff frequency).
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Graphical Solution (cont.)

Graph for a Higher Frequency
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Proper vs. Improper

0xv hα=

If v < 0 :  “improper SW”  (fields increase in x direction) 

If v > 0 :  “proper SW” (fields decrease in x direction) 

Cutoff frequency: TM1 mode:
0v

u π
=
=

Cutoff frequency: The transition between a proper and improper mode.

Note:
The definition of cutoff frequency for this type of structure (an open structure) is 

different from that for a closed waveguide structure (e.g., rectangular waveguide) 
(where kz = 0 at the cutoff frequency).
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TM1 Cutoff Frequency

R π=

2
0 1 1k h n π− =

2
0 1

1/ 2
1

h
nλ

=
−

2
0 1

/ 2TM :
1

0,1,2,...

n
h n

n
n

λ
=

−

=

For other TMn modes:

TM1:

⇒
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TM0 Mode
The TM0 mode has no cutoff frequency

(it can propagate at any frequency): 

Note:
The lower the frequency, the slower the field decays away from the 

interface. As high frequency the wave decays very quickly since v → ∞.

( )22 2
0 0 0 0/ 1x z zk k k k kα = − = −
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TM0 Mode (cont.)

After making some approximations to the transcendental equation, valid 
for low frequency, we have the following approximate result for the TM0
mode (derivation omitted): 

( ) ( )
0

1/ 222 2
0 1

0 2

1
1TM

r

k h n
kβ

ε

 −
 ≈ +
 
 

0 1k h <<
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TEx Modes

( ) ( )0 1 1
1 cotx x x

r

h k h k hα
µ

= −

1 cot
r

v u u
µ

= −

Hence
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TEx Modes (cont.)
No TE0 mode ( fc= 0). The lowest TEx mode is the TE1 mode. 

TE1 cut-off frequency at  R = π / 2:

( ) 2
0 1 1

2
k h n π

− =

2
0 1

1/ 4
1

h
nλ

=
−

In general, we have

TEn: ( )
2

0 1

2 1 / 4

1
1,2,3,.........

nh
n

n

λ
−

=
−

=

The TE1 mode will 
start to propagate 

when the substrate 
thickness is roughly 

1/4 of a dielectric 
wavelength.
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TEx Modes (cont.)
Here we examine the radiation efficiency er of a small electric dipole placed 
on top of the substrate (which could model a microstrip antenna, or a bend 
on a microstrip line). 
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Dielectric Rod

a 

z 

,r rε µ

This serves as a model for a single-mode fiber-optic cable. 

The physics is similar to 
that of the TM0 surface 
wave on a grounded 

substrate.
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Fiber-Optic Guide

Two types of fiber-optic guides:

1) Single-mode fiber

2) Multi-mode fiber

This fiber carries a single mode (HE11). This requires the fiber 
diameter to be on the order of a wavelength. It has less loss, 
dispersion, and signal distortion than multimode fiber. It is often 
used for long-distances (e.g., greater than 1 km). 

This fiber has a diameter that is large relative to a wavelength (e.g., 
10 wavelengths). It operates on the principle of total internal 
reflection (critical-angle effect). It can handle more power than the 
single-mode fiber, and is less expensive, it but has more loss and 
dispersion. 
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Dominant mode (lowest cutoff frequency): HE11 (fc = 0)

The field shape is somewhat similar to the TE11 circular waveguide mode.

Dielectric Rod: Single Mode Fiber

Note:
The notation HE means that the mode is hybrid, and has both Ez and Hz, although 

Hz is stronger. (For an EH mode, Ez would be stronger.)

The physical properties of the fields are similar to those of the TM0 surface wave on 
a slab. (For example, at low frequency the field is more loosely bound to the rod.)

The dominant mode is a hybrid
mode (it has both Ez and Hz).

E

HE11 mode on single-mode fiber
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Single Mode Fiber (cont.)

What they look like in practice:
Single-mode fiberhttp://en.wikipedia.org/wiki/Optical_fiber
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Multimode Fiber

http://en.wikipedia.org/wiki/Optical_fiber

Higher index core region

Multimode fiber

A multimode fiber can be 
explained using 

geometrical optics and 
internal reflection. 

The “ray” of light is 
actually a superposition of 
many waveguide modes 

(hence the name 
“multimode”).

A laser bouncing down an acrylic rod, illustrating the total 
internal reflection of light in a multi-mode optical fiber
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http://upload.wikimedia.org/wikipedia/commons/4/46/Optical-fibre.svg
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