Microwave Engineering

Fall 2019

Prof. David R. Jackson
Dept. of ECE

Notes 17 S-Parameter Measurements

S-parameters are typically measured, at microwave frequencies, with a network analyzer (NA).

These instruments have found wide, almost universal, application since the mid to late 1970's.

* Vector* network analyzer: Magnitudes and phases of the S parameters are measured.
* Scalar network analyzer: Only the magnitudes of the S-parameters are measured.

Most NA's measure 2-port parameters. Some measure 4 and 6 ports.

[^0]
S-Parameter Measurements (cont.)

A Vector Network Analyzer (VNA) is usually used to measure S parameters.

Note:

If there are more than 2 ports, we measure different pairs of ports separately with a 2-port VNA.

S-Parameter Measurements (cont.)

S-Parameter Measurements (cont.)

We want to measure

Error boxes contain effects of test cables, connectors, couplers,...

S-Parameter Measurements (cont.)

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{\text {MEAS }}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{A}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{B}
$$

De-embedded \downarrow

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{A}\right)^{-1}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{\mathrm{MEAS}}\left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{B}\right)^{-1}
$$

S-Parameter Measurements (cont.)

Measurement plane A plane B

Assume error boxes are reciprocal (symmetric matrices)

$$
\text { We need to "calibrate" to find }\left[S^{A}\right] \text { and }\left[S^{B}\right] \text {. }
$$

If $\left[S^{A}\right]$ and $\left[S^{B}\right]$ are known \Rightarrow we can extract $[S]$ from measurements.

This is called "de-embedding".

"Short, open, match" calibration procedure

These loads are connected to the end of the cable from the VNA.

$$
\begin{aligned}
& S_{11 s c}^{m}=S_{11}^{\alpha}-\frac{\left(S_{21}^{\alpha}\right)^{2}}{1+S_{22}^{\alpha}} \\
& S_{11}^{m}=S_{11}^{\alpha}+\frac{\left(S_{21}^{\alpha}\right)^{2}}{1-S_{22}^{\alpha}} \\
& S_{11}^{m}=S_{11}^{\alpha}
\end{aligned} \begin{array}{cc}
3 \text { measurements: } \\
\left(S_{11 s c}^{m}, S_{110 c}^{m}, S_{11_{\text {macse }}}^{m}\right)
\end{array} \quad \begin{gathered}
\text { Recall from Notes 16: } \\
\Gamma_{i n}=S_{11}+\frac{S_{21} S_{12} \Gamma_{L}}{1-\Gamma_{L} S_{22}} \\
3 \text { unknowns: } \\
\left(S_{11}^{\alpha}, S_{21}^{\alpha}, S_{22}^{\alpha}\right)
\end{gathered}
$$

Calibration (cont.)

"Thru-Reflect-Line (TRL)" calibration procedure

This is an improved calibration method that involves three types of connections:

1) The "thru" connection, in which port 1 is directly connected to port 2.
2) The "reflect" connection, in which a load with an (ideally) large (but not necessarily precisely known) reflection coefficient is connected.
3) The "line" connection, in which a length of matched transmission line (with an unknown length) is connected between ports 1 and 2.

The advantage of the TRL calibration is that is does not require precise short, open, and matched loads.

This method is discussed in the Pozar book (pp. 193-196).

Discontinuities

* In microwave engineering, discontinuities are often represented by pi or tee networks.
* Sometimes the pi or tee network reduces to a singe series or shunt element.
* For waveguide systems, the TEN is used to represent the waveguide.

Discontinuities: Rectangular Waveguide

Inductive iris or strip

Capacitive iris or strip

\Rightarrow

Discontinuities: RWG (cont.)

Discontinuities: Microstrip

Note:

For a good equivalent circuit, the element values are fairly stable over a wide range of frequencies.

Z-Parameter Extraction

Assume a reciprocal and symmetrical waveguide or transmission-line discontinuity.

Examples

Z-Parameter Extraction (cont.)

The Z_{2} element is split in two:

Z-Parameter Extraction (cont.)

Assume that we place a short or an open along the plane of symmetry.

Z-Parameter Extraction (cont.)

The short or open can be realized by using odd-mode or even-mode excitation.

Even/odd-mode analysis is very useful in analyzing devices (e.g., using HFSS).

Z-Parameter Extraction (cont.)

$$
Z_{L}^{\mathrm{SC}}=Z_{0}\left(\frac{1+S_{11}^{\mathrm{SC}}}{1-S_{11}^{\mathrm{SC}}}\right)
$$

Even mode voltage waves

$$
Z_{L}^{\mathrm{OC}}=Z_{0}\left(\frac{1+S_{11}^{\mathrm{OC}}}{1-S_{11}^{\mathrm{OC}}}\right)
$$

Z-Parameter Extraction (cont.)

Hence we have:

$$
\begin{gathered}
Z_{1}=Z_{0}\left(\frac{1+S_{11}^{\mathrm{SC}}}{1-S_{11}^{\mathrm{SC}}}\right) \\
Z_{2}=\frac{1}{2}\left(Z_{0}\left(\frac{1+S_{11}^{\mathrm{OC}}}{1-S_{11}^{\mathrm{OC}}}\right)-Z_{0}\left(\frac{1+S_{11}^{\mathrm{SC}}}{1-S_{11}^{\mathrm{SC}}}\right)\right)
\end{gathered}
$$

De-embeding of a Line Length

We wish the know the reflection coefficient of a 1-port device under test (DUT), but the DUT is not assessable directly - it has an extra length of transmission line connected to it (whose length may not be known).

Replace DUT with short circuit $\left(S_{11}^{\text {DUT }} \rightarrow-1\right) \Rightarrow S_{11}^{\mathrm{MEAS}, \mathrm{SC}}=-e^{-j 2 \beta L}=-1 / e^{+j 2 \beta L}$

$$
S_{11}^{\mathrm{DUT}}=S_{11}^{\mathrm{MEAS}, \mathrm{DUT}} e^{+j 2 \beta L} \quad \square \quad S_{11}^{\mathrm{DUT}}=S_{11}^{\mathrm{MEAS}, \mathrm{DUT}}\left(\frac{-1}{S_{11}^{\mathrm{MEAS}, \mathrm{SC}}}\right)
$$

[^0]: * The S parameters are really complex numbers, not vectors, but this is the customary name. There is an analogy between complex numbers and 2D vectors.

