ECE 5317-6351

Fall 2019

Prof. David R. Jackson Dept. of ECE

Notes 18
 Impedance Matching

Impedance Matchìng

Impedance matching is used to:

- Maximize power from source to load
- Minimize reflections
$\begin{array}{cc}\text { We have } & Z_{L}=R_{L}+j X_{L} \\ \text { We want } & Z_{\text {in }}=R_{\text {in }}+j X_{\text {in }} \\ & \end{array}$
(usually zero)
Considerations:
\Downarrow Two constraints
- Complexity
- Bandwidth
- Implementation
- Adjustability

A matching circuit typically requires at least 2 degrees of freedom.

Impedance Matching (cont.)

Matching Methods:

1) Lumped element matching circuits
2) Transmission line matching circuits
3) Quarter-wave impedance transformers

Lumped-Element Matching Circuits

Examples

One extra degree of freedom

Lumped-Element Matching Circuits (cont.)

"ladder"

m extra degrees of freedom

Smith Chart Review

Short-hand version
Smith Chart
(Z-Chart)

Γ plane

Smith Charts Review (cont.)

Smith Chari
(Y-Chart)

Lines of constant B

Γ plane

Smith Charts Review (cont.)

ZY- Chart

NORMLIZED IMP EDANOE AND ADMITANCE COORCINA TES

Γ plane

Series and Shunt Elements

Note:

The Smith chart is not actually being used as a transmission-line calculator but an impedance/admittance calculator. Hence, the normalizing impedance Z_{0} is arbitrary. (Usually we choose it to be the desired input resistance $R_{i n}$.)

High Impedance to Low Impedance

$$
\text { Use when } G_{L}<Y_{i n}
$$

(The load is outside of the red $G=1$ circle.)

Low Impedance to High Impedance

Use when $R_{L}<R_{\text {in }}$
(The load is outside of the black $R=1$ circle.)

Example

Use high impedance to low impedance matching. We want $Z_{\text {in }}=100[\Omega]$

Example (cont.)

Here, the design example was repeated using a 50 [Ω] normalizing impedance.

Note that the final normalized input impedance is 2.0.

5 GHz design frequency
C $=0.096[\mathrm{pF}]$
$L=9.55[\mathrm{nH}]$

Matching with a Pi Network

This works for low-high or high-low.

Note:

This solution is not unique. Different values for $B_{c 2}$ could have been chosen.

Note:

We could have also used parallel inductors and a series capacitor, or other combinations.

Pi Network Example

$$
(1000 \Omega \rightarrow 100 \Omega)
$$

Note that the final normalized input impedance is 2.0 .

High Impedance to Low Impedance

Exact Solution

High Impedance to Low Impedance

Exact Solution

$$
R_{L}>R_{\text {in }}
$$

Summary

$$
\begin{gathered}
G_{L}=1 / R_{L} \\
B_{2}=-1 / X_{2}
\end{gathered}
$$

$$
\begin{gathered}
B_{2}= \pm \sqrt{G_{L}\left(G_{i n}-G_{L}\right)} \\
X_{1}=\frac{B_{2}}{G_{L}^{2}+B_{2}^{2}}
\end{gathered}
$$

Transmission Lìne Matchìng

* Single-stub matching
- This has already been discussed.
* Double-stub matching
- This is an alternative matching method that gives more flexibility (details omitted - please see the Pozar book).

Quarter-Wave Transformer

@ $f=f_{0}$
$\beta \ell=\frac{2 \pi}{\lambda_{g}} \frac{\lambda_{g}}{4}=\frac{\pi}{2}$
$\Rightarrow Z_{i n}=\frac{Z_{T}^{2}}{Z_{L}}$
$\Gamma_{i n}=0$ when $Z_{T}=\sqrt{Z_{0} Z_{L}}$
Only true at f_{0} where $\ell=\lambda_{g} / 4$

Note:

If Z_{L} is not real, we can always add a reactive load in series or parallel to make it real (or add a length of transmission line between the load and the transformer to get a real impedance).

Quarter-Wave Transformer (cont.)

At a general frequency:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{T}\left(\frac{Z_{L}+j Z_{T} \tan \beta_{T} \ell}{Z_{T}+j Z_{L} \tan \beta_{T} \ell}\right) \\
& =Z_{T}\left(\frac{Z_{L}+j Z_{T} t}{Z_{T}+j Z_{L} t}\right) \quad t \equiv \tan \beta_{T} \ell
\end{aligned}
$$

After some algebra (omitted):

$$
\Gamma=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}+j 2 t \sqrt{Z_{0} Z_{L}}}
$$

where we have used $Z_{T}=\sqrt{Z_{0} Z_{L}}$

Quarter-Wave Transformer (cont.)

$$
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}+j 2 t \sqrt{Z_{0} Z_{L}}}
$$

After some more algebra (omitted):

$$
|\Gamma|=\frac{1}{\sqrt{1+\left(\frac{4 Z_{0} Z_{L}}{\left(Z_{L}-Z_{0}\right)^{2}} \sec ^{2} \theta\right)}} \quad \theta \equiv \beta_{T} \ell
$$

where we used $1+t^{2}=1+\tan ^{2} \beta_{T} l=\sec ^{2} \beta_{T} l=\sec ^{2} \theta$

Quarter-Wave Transformer (cont.)

For example, using $\Gamma_{m}=1 / 3$ corresponds to SWR $=2.0$. This corresponds to $\Gamma_{m}=-9.54 \mathrm{~dB}$.

Bandwidth region of transformer:

$$
\Delta \theta=\left(\beta_{2 T}-\beta_{1 T}\right) \ell=2\left(\frac{\pi}{2}-\theta_{m}\right)
$$

$$
\Gamma_{m}=\frac{1}{\sqrt{1+\left[\frac{4 Z_{0} Z_{L}}{\left(Z_{L}-Z_{0}\right)^{2}} \sec ^{2} \theta_{m}\right]}}
$$

Solving for θ_{m} :

$$
\theta_{m}=\cos ^{-1}\left(\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}}\right) \frac{2 \sqrt{Z_{0} Z_{L}}}{\left|Z_{L}-Z_{0}\right|}
$$

Solve for θ_{m}
Note: $\cos ^{-1} x \in(0, \pi / 2)$

Quarter-Wave Transformer (cont.)

For TEM lines:

$$
\begin{aligned}
& \theta=\beta_{T} \ell=\frac{\pi}{2} \frac{f}{f_{0}} \Rightarrow f=\theta\left(\frac{2 f_{0}}{\pi}\right) \\
& \Rightarrow f_{m}=\theta_{m}\left(\frac{2 f_{0}}{\pi}\right) \\
& \Rightarrow \mathrm{BW}=\frac{\Delta f}{f_{0}}=\frac{2\left(f_{0}-f_{m}\right)}{f_{0}}=2-\frac{2 f_{m}}{f_{0}}=2-\frac{4 \theta_{m}}{\pi}
\end{aligned}
$$

$$
\mathrm{BW}=2-\frac{4 \theta_{m}}{\pi}
$$

Note:

Multiply by 100 to get BW in percent.

Hence, using θ_{m} from the previous slide,

$$
\mathrm{BW}=2-\frac{4}{\pi} \cos ^{-1}\left[\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}} \frac{2 \sqrt{Z_{0} Z_{L}}}{\left|Z_{L}-Z_{0}\right|}\right]
$$

Quarter-Wave Transformer (cont.)

Summary

$$
\mathrm{BW}=2-\frac{4}{\pi} \cos ^{-1}\left[\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}} \frac{2 \sqrt{Z_{0} Z_{L}}}{\left|Z_{L}-Z_{0}\right|}\right]
$$

Smaller contrast between Z_{0} and $Z_{L} \Rightarrow$ larger BW Larger contrast between Z_{0} and $Z_{L} \Rightarrow$ smaller BW

Example

We'll illustrate with two choices:

$$
\begin{array}{ll}
\Gamma_{m}=1 / 3\left(\Gamma_{m}^{\mathrm{dB}}=-9.54[\mathrm{~dB}]\right) & \Rightarrow \mathrm{BW}=0.433(43.3 \%) \\
\Gamma_{m}=0.05\left(\Gamma_{m}^{\mathrm{dB}}=-26.0[\mathrm{~dB}]\right) & \Rightarrow \mathrm{BW}=0.060(6.0 \%)
\end{array}
$$

$$
\mathrm{BW}=2-\frac{4}{\pi} \cos ^{-1}\left[\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}} \frac{2 \sqrt{Z_{0} Z_{L}}}{\left|Z_{L}-Z_{0}\right|}\right]
$$

